Network Working Group
Request for Comments: 3635
Obsoletes: 2665
Category: Standards Track
J. Flick
Hewlett-Packard Company
September 2003

Definitions of Managed Objects for

the Ethernet-like Interface Types

Status of this Memo

This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

Copyright © The Internet Society (2003). All Rights Reserved.

Abstract

This memo defines a portion of the Management Information Base (MIB) for use with network management protocols in the Internet community. In particular, it defines objects for managing Ethernet-like interfaces. This memo obsoletes RFC 2665. It updates that specification by including management information useful for the management of 10 Gigabit per second (Gb/s) Ethernet interfaces.

Table of Contents

   1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  2
   2.  The Internet-Standard Management Framework . . . . . . . . . .  3
   3.  Overview . . . . . . . . . . . . . . . . . . . . . . . . . . .  3
       3.1.  Relation to MIB-2. . . . . . . . . . . . . . . . . . . .  4
       3.2.  Relation to the Interfaces MIB . . . . . . . . . . . . .  4
             3.2.1.  Layering Model . . . . . . . . . . . . . . . . .  4
             3.2.2.  Virtual Circuits . . . . . . . . . . . . . . . .  4
             3.2.3.  ifRcvAddressTable. . . . . . . . . . . . . . . .  5
             3.2.4.  ifType . . . . . . . . . . . . . . . . . . . . .  5
             3.2.5.  ifXxxOctets. . . . . . . . . . . . . . . . . . .  5
             3.2.6.  ifXxxXcastPkts . . . . . . . . . . . . . . . . .  6
             3.2.7.  ifMtu. . . . . . . . . . . . . . . . . . . . . .  8
             3.2.8.  ifSpeed and ifHighSpeed. . . . . . . . . . . . .  8
             3.2.9.  ifPhysAddress. . . . . . . . . . . . . . . . . .  9
             3.2.10.  Specific Interface MIB Objects. . . . . . . . . 10
       3.3.  Relation to the 802.3 MAU MIB. . . . . . . . . . . . . . 13
   
       3.4.  dot3StatsEtherChipSet. . . . . . . . . . . . . . . . . . 13
       3.5.  Mapping of IEEE 802.3 Managed Objects. . . . . . . . . . 14
   4.  Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . 17
   5.  Intellectual Property Statement. . . . . . . . . . . . . . . . 55
   6.  Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 56
   7.  Normative References . . . . . . . . . . . . . . . . . . . . . 57
   8.  Informative References . . . . . . . . . . . . . . . . . . . . 58
   9.  Security Considerations. . . . . . . . . . . . . . . . . . . . 59
   10. IANA Considerations. . . . . . . . . . . . . . . . . . . . . . 60
   A.  Change Log . . . . . . . . . . . . . . . . . . . . . . . . . . 61
       A.1.  Changes since RFC 2665 . . . . . . . . . . . . . . . . . 61
       A.2.  Changes between RFC 2358 and RFC 2665  . . . . . . . . . 62
       A.3.  Changes between RFC 1650 and RFC 2358. . . . . . . . . . 62
   Author's Address . . . . . . . . . . . . . . . . . . . . . . . . . 63
   Full Copyright Statement  . . . . . . . . . . . . . . . . . . . . .64

1. Introduction

This memo defines a portion of the Management Information Base (MIB) for use with network management protocols in the Internet community. In particular, it defines objects for managing Ethernet-like interfaces.

This memo also includes a MIB module. This MIB module updates the list of managed objects specified in the earlier version of this MIB, module, RFC 2665 [RFC2665].

Ethernet technology, as defined by the 802.3 Working Group of the IEEE, continues to evolve, with scalable increases in speed, new types of cabling and interfaces, and new features. This evolution may require changes in the managed objects in order to reflect this new functionality. This document, as with other documents issued by this working group, reflects a certain stage in the evolution of Ethernet technology. In the future, this document might be revised, or new documents might be issued by the Ethernet Interfaces and Hub MIB Working Group, in order to reflect the evolution of Ethernet technology.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

2. The Internet-Standard Management Framework

For a detailed overview of the documents that describe the current Internet-Standard Management Framework, please refer to section 7 of RFC 3410 [RFC3410].

Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. MIB objects are generally accessed through the Simple Network Management Protocol (SNMP). Objects in the MIB are defined using the mechanisms defined in the Structure of Management Information (SMI). This memo specifies a MIB module that is compliant to the SMIv2, which is described in STD 58, RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and STD 58, RFC 2580 [RFC2580].

3. Overview

Instances of these object types represent attributes of an interface to an ethernet-like communications medium. At present, ethernet-like media are identified by the value ethernetCsmacd(6) of the ifType object in the Interfaces MIB [RFC2863]. Some older implementations may return the values iso88023Csmacd(7) or starLan(11) for ifType for ethernet-like media.

The definitions presented here are based on Section 30, "10 Mb/s, 100 Mb/s 1000 Mb/s and 10 Gb/s Management", and Annex 30A, "GDMO Specification for 802.3 managed object classes" of IEEE Std. 802.3, 2002 Edition [IEEE802.3], amended by IEEE Std. 802.3ae-2002 [IEEE802.3ae], as originally interpreted by Frank Kastenholz, then of Interlan in [KASTEN]. Implementors of these MIB objects should note that IEEE Std. 802.3 [IEEE802.3] explicitly describes (in the form of Pascal pseudocode) when, where, and how various MAC attributes are measured. The IEEE document also describes the effects of MAC actions that may be invoked by manipulating instances of the MIB objects defined here.

To the extent that some of the attributes defined in [IEEE802.3] are represented by previously defined objects in MIB-2 [RFC1213] or in the Interfaces MIB [RFC2863], such attributes are not redundantly represented by objects defined in this memo. Among the attributes represented by objects defined in other memos are the number of octets transmitted or received on a particular interface, the number of frames transmitted or received on a particular interface, the promiscuous status of an interface, the MAC address of an interface, and multicast information associated with an interface.

3.1. Relation to MIB-2

This section applies only when this MIB is used in conjunction with the "old" [RFC1213] interface group.

The relationship between an ethernet-like interface and an interface in the context of MIB-2 is one-to-one. As such, the value of an ifIndex object instance can be directly used to identify corresponding instances of the objects defined herein.

For agents which implement the (now deprecated) ifSpecific object, an instance of that object that is associated with an ethernet-like interface has the OBJECT IDENTIFIER value:

dot3 OBJECT IDENTIFIER ::= { transmission 7 }

3.2. Relation to the Interfaces MIB

The Interface MIB [RFC2863] requires that any MIB which is an adjunct of the Interface MIB clarify specific areas within the Interface MIB. These areas were intentionally left vague in the Interface MIB to avoid over constraining the MIB, thereby precluding management of certain media-types.

Section 4 of [RFC2863] enumerates several areas which a media-specific MIB must clarify. Each of these areas is addressed in a following subsection. The implementor is referred to [RFC2863] in order to understand the general intent of these areas.

3.2.1. Layering Model

Ordinarily, there are no sublayers for an ethernet-like interface. However there may be implementation-specific requirements which require the use of sublayers. One example is the use of 802.3 link aggregation. In this case, Annex 30C of [IEEE802.3] describes the layering model and the use of the ifStackTable for representing aggregated links. Another example is the use of the 802.3 WAN Interface Sublayer. In this case, The 802.3 WIS MIB [RFC3637] describes the layering model and the use of the ifStackTable for representing the WAN sublayer.

3.2.2. Virtual Circuits

This medium does not support virtual circuits and this area is not applicable to this MIB.

3.2.3. ifRcvAddressTable

This table contains all IEEE 802.3 addresses, unicast, multicast, and broadcast, for which this interface will receive packets and forward them up to a higher layer entity for local consumption. The format of the address, contained in ifRcvAddressAddress, is the same as for ifPhysAddress.

In the event that the interface is part of a MAC bridge, this table does not include unicast addresses which are accepted for possible forwarding out some other port. This table is explicitly not intended to provide a bridge address filtering mechanism.

3.2.4. ifType

This MIB applies to interfaces which have the ifType value ethernetCsmacd(6). It is REQUIRED that all ethernet-like interfaces use an ifType of ethernetCsmacd(6) regardless of the speed that the interface is running or the link-layer encapsulation in use. Use of the ifType values iso88023Csmacd(7) and starLan(11) are deprecated, however some older implementations may return these values. Management applications should be prepared to receive these deprecated ifType values from older implementations.

There are three other interface types defined in the IANAifType-MIB for Ethernet. They are fastEther(62), fastEtherFX(69), and gigabitEthernet(117). These interface types were registered by individual vendors, not by any IETF working group. A requirement for compliance with this document is that all ethernet-like interfaces MUST return ethernetCsmacd(6) for ifType, and MUST NOT return fastEther(62), fastEtherFX(69), or gigabitEthernet(117). However, as there are fielded implementations that do return these obsolete ifType values, management applications SHOULD be prepared to receive them from older implementations.

Information on the particular flavor of Ethernet that an interface is running is available from ifSpeed in the Interfaces MIB, and ifMauType in the 802.3 MAU MIB [RFC3636]. Note that implementation of the 802.3 MAU MIB [RFC3636] is REQUIRED for all ethernet-like interfaces.

3.2.5. ifXxxOctets

The Interface MIB octet counters, ifInOctets, ifOutOctets, ifHCInOctets and ifHCOutOctets, MUST include all octets in valid frames sent or received on the interface, including the MAC header and FCS, but not the preamble, start of frame delimiter, or extension octets. This corresponds to the definition of frameSize/8 in section

4.2.7.1 of [IEEE802.3] (frameSize is defined in bits rather than octets, and is defined as 2 x addressSize + lengthOrTypeSize + dataSize + crcSize). They do not include the number of octets in collided or failed transmit attempts, since the MAC layer driver typically does not have visibility to count these octets. They also do not include octets in received invalid frames, since this information is normally not passed to the MAC layer, and since non-promiscuous MAC implementations cannot reliably determine whether an invalid frame was actually addressed to this station.

Note that these counters do include octets in valid MAC control frames sent or received on the interface, as well as octets in otherwise valid received MAC frames that are discarded by the MAC layer for some reason (insufficient buffer space, unknown protocol, etc.).

Note that the octet counters in IF-MIB do not exactly match the definition of the octet counters in IEEE 802.3. aOctetsTransmittedOK and aOctetsReceivedOK count only the octets in the clientData and Pad fields, whereas ifInOctets and ifOutOctets include the entire MAC frame, including MAC header and FCS. However, the IF-MIB counters can be derived from the IEEE 802.3 counters as follows:

ifInOctets = aOctetsReceivedOK + (18 * aFramesReceivedOK) ifOutOctets = aOctetsTransmittedOK + (18 * aFramesTransmittedOK)

Another difference to keep in mind between the IF-MIB counters and IEEE 802.3 counters is that in the IEEE 802.3 document, the frame counters and octet counters are always incremented together. aOctetsTransmittedOK counts the number of octets in frames that were counted by aFramesTransmittedOK. aOctetsReceivedOK counts the number of octets in frames that were counted by aFramesReceivedOK. This is not the case with the IF-MIB counters. The IF-MIB octet counters count the number of octets sent to or received from the layer below this interface, whereas the packet counters count the number of packets sent to or received from the layer above. Therefore, received MAC Control frames, ifInDiscards, and ifInUnknownProtos are counted by ifInOctets, but not ifInXcastPkts. Transmitted MAC Control frames are counted by ifOutOctets, but not ifOutXcastPkts. ifOutDiscards and ifOutErrors are counted by ifOutXcastPkts, but not ifOutOctets.

3.2.6. ifXxxXcastPkts

The packet counters in the IF-MIB do not exactly match the definition of the frame counters in IEEE 802.3. aFramesTransmittedOK counts the number of frames successfully transmitted on the interface, whereas ifOutUcastPkts, ifOutMulticastPkts and ifOutBroadcastPkts count the number of transmit requests made from a higher layer, whether or not the transmit attempt was successful. This means that packets counted by ifOutErrors or ifOutDiscards are also counted by ifOutXcastPkts, but are not counted by aFramesTransmittedOK. This also means that, since MAC Control frames are generated by a sublayer internal to the interface layer rather than by a higher layer, they are not counted by ifOutXcastPkts, but are counted by aFramesTransmittedOK. Roughly:

aFramesTransmittedOK = ifOutUcastPkts + ifOutMulticastPkts +

                            ifOutBroadcastPkts + dot3OutPauseFrames -
                            (ifOutErrors + ifOutDiscards)

Similarly, aFramesReceivedOK counts the number of frames received successfully by the interface, whether or not they are passed to a higher layer, whereas ifInUcastPkts, ifInMulticastPkts and ifInBroadcastPkts count only the number of packets passed to a higher layer. This means that packets counted by ifInDiscards or ifInUnknownProtos are also counted by aFramesReceivedOK, but are not counted by ifInXcastPkts. This also means that, since MAC Control frames are consumed by a sublayer internal to the interface layer and not passed to a higher layer, they are not counted by ifInXcastPkts, but are counted by aFramesReceivedOK. Roughly:

aFramesReceivedOK = ifInUcastPkts + ifInMulticastPkts +

                         ifInBroadcastPkts + dot3InPauseFrames +
                         ifInDiscards + ifInUnknownProtos

This specification chooses to treat MAC control frames as being originated and consumed within the interface and not counted by the IF-MIB packet counters. MAC control frames are normally sent as multicast packets. In many network environments, MAC control frames can greatly outnumber multicast frames carrying actual data. If MAC control frames were included in the ifInMulticastPkts and ifOutMulticastPkts, the count of data-carrying multicast packets would tend to be drowned out by the count of MAC control frames, rendering those counters considerably less useful.

To better understand the issues surrounding the mapping of the IF-MIB packet and octet counters to an Ethernet interface, it is useful to refer to a Case Diagram [CASE] for the IF-MIB counters, with modifications to show the proper interpretation for the Ethernet interface layer.

                               layer above
   --------------------------------------------------------------------
       ifInUcastPkts+         ^           |     ifOutUcastPkts+
       ifInBroadcastPkts+ ----|----   ----|---- ifOutBroadcastPkts+
       ifInMulticastPkts      |           |     ifOutMulticastPkts
                              |           |
        dot3InPauseFrames <---|           |<--- dot3OutPauseFrames
                              |           |
             ifInDiscards <---|           |
                              |           |
        ifInUnknownProtos <---|           |---> ifOutDiscards
                              |           |
               ifInOctets ----|----   ----|---- ifOutOctets
                              |           |
               ifInErrors <---|           |---> ifOutErrors
                              |           V
   --------------------------------------------------------------------
                               layer below

3.2.7. ifMtu

The defined standard MTU for ethernet-like interfaces is 1500 octets. However, many implementations today support larger packet sizes than the IEEE 802.3 standard. The value of this object MUST reflect the actual MTU in use on the interface, whether it matches the standard MTU or not.

This value should reflect the value seen by the MAC client interface. When a higher layer protocol, like IP, is running over Ethernet framing, this is the MTU that will be seen by that higher layer protocol. However, most ethernet-like interfaces today run multiple protocols that use a mix of different framing types. For example, an IEEE 802.2 LLC type 1 client protocol will see an MTU of 1497 octets on an interface using the IEEE standard maximum packet size, and a protocol running over SNAP will see an MTU of 1492 octets on an interface using the IEEE standard maximum packet size. However, since specification mandates using the MTU as seen at the MAC client interface, the value of ifMtu would be reported as 1500 octets in these cases.

3.2.8. ifSpeed and ifHighSpeed

For ethernet-like interfaces operating at 1000 Megabits per second (Mb/s) or less, ifSpeed will represent the current operational speed of the interface in bits per second. For current interface types, this will be equal to 1,000,000 (1 million), 10,000,000 (10 million), 100,000,000 (100 million), or 1,000,000,000 (1 billion). ifHighSpeed will represent the current operational speed in millions of bits per second. For current ethernet-like interfaces, this will be equal to 1, 10, 100, or 1,000. If the interface implements auto-negotiation, auto-negotiation is enabled for this interface, and the interface has not yet negotiated to an operational speed, these objects SHOULD reflect the maximum speed supported by the interface.

For ethernet-like interfaces operating at greater than 1000 Mb/s, ifHighSpeed will represent the current operational speed of the interface in millions of bits per second. Note that for WAN implementations, this will be the payload data rate over the WAN interface sublayer. For current implementations, this will be equal to 10,000 for LAN implementations of 10 Gb/s, and 9,294 for WAN implementations of the 10 Gb/s MAC over an OC-192 PHY. For these speeds, ifSpeed should report a maximum unsigned 32-bit value of 4,294,967,295 as specified in [RFC2863].

Note that these object MUST NOT indicate a doubled value when operating in full-duplex mode. It MUST indicate the correct line speed regardless of the current duplex mode. The duplex mode of the interface may be determined by examining either the dot3StatsDuplexStatus object in this MIB module, or the ifMauType object in the 802.3 MAU MIB [RFC3636].

3.2.9. ifPhysAddress

This object contains the IEEE 802.3 address which is placed in the source-address field of any Ethernet, Starlan, or IEEE 802.3 frames that originate at this interface. Usually this will be kept in ROM on the interface hardware. Some systems may set this address via software.

In a system where there are several such addresses the designer has a tougher choice. The address chosen should be the one most likely to be of use to network management (e.g. the address placed in ARP responses for systems which are primarily IP systems).

If the designer truly can not chose, use of the factory-provided ROM address is suggested.

If the address can not be determined, an octet string of zero length should be returned.

The address is stored in binary in this object. The address is stored in "canonical" bit order, that is, the Group Bit is positioned as the low-order bit of the first octet. Thus, the first byte of a multicast address would have the bit 0x01 set.

3.2.10. Specific Interface MIB Objects

The following table provides specific implementation guidelines for applying the interface group objects to ethernet-like media.

     Object                     Guidelines
     
     ifIndex                    Each ethernet-like interface is
                                represented by an ifEntry.  The
                                dot3StatsTable in this MIB module is
                                indexed by dot3StatsIndex. The interface
                                identified by a particular value of
                                dot3StatsIndex is the same interface as
                                identified by the same value of ifIndex.
     
     ifDescr                    Refer to [RFC2863].
     
     ifType                     Refer to section 3.2.4.
     
     ifMtu                      Refer to section 3.2.7.
     
     ifSpeed                    Refer to section 3.2.8.
     
     ifPhysAddress              Refer to section 3.2.9.
     
     ifAdminStatus              Write access is not required.  Support
                                for 'testing' is not required.
     
     ifOperStatus               The operational state of the interface.
                                Support for 'testing' is not required.
                                The value 'dormant' has no meaning for
                                an ethernet-like interface.
     
     ifLastChange               Refer to [RFC2863].
     
     ifInOctets                 The number of octets in valid MAC frames
                                received on this interface, including
                                the MAC header and FCS.  This does
                                include the number of octets in valid
                                MAC Control frames received on this
                                interface.  See section 3.2.5.
     
     ifInUcastPkts              Refer to [RFC2863].  Note that this does
                                not include MAC Control frames, since
                                MAC Control frames are consumed by the
                                interface layer and are not passed to
                                any higher layer protocol.  See
                                section 3.2.6.
     
     ifInDiscards               Refer to [RFC2863].
     
     ifInErrors                 The sum for this interface of
                                dot3StatsAlignmentErrors,
                                dot3StatsFCSErrors,
                                dot3StatsFrameTooLongs,
                                and dot3StatsInternalMacReceiveErrors.
     
     ifInUnknownProtos          Refer to [RFC2863].
     
     ifOutOctets                The number of octets transmitted in
                                valid MAC frames on this interface,
                                including the MAC header and FCS.  This
                                does include the number of octets in
                                valid MAC Control frames transmitted on
                                this interface.  See section 3.2.5.
     
     ifOutUcastPkts             Refer to [RFC2863].  Note that this does
                                not include MAC Control frames, since
                                MAC Control frames are generated by the
                                interface layer, and are not passed from
                                any higher layer protocol.  See section
                                3.2.6.
     
     ifOutDiscards              Refer to [RFC2863].
     
     ifOutErrors                The sum for this interface of:
                                dot3StatsSQETestErrors,
                                dot3StatsLateCollisions,
                                dot3StatsExcessiveCollisions,
                                dot3StatsInternalMacTransmitErrors and
                                dot3StatsCarrierSenseErrors.
     
     ifName                     Locally-significant textual name for the
                                interface (e.g. lan0).
     
     ifInMulticastPkts          Refer to [RFC2863].  Note that this does
                                not include MAC Control frames, since
                                MAC Control frames are consumed by the
                                interface layer and are not passed to
                                any higher layer protocol.  See section
                                3.2.6.
     
     ifInBroadcastPkts          Refer to [RFC2863].  Note that this does
                                not include MAC Control frames, since
                                MAC Control frames are consumed by the
                                interface layer, and are not passed to
                                any higher layer protocol.  See section
                                3.2.6.
     
     ifOutMulticastPkts         Refer to [RFC2863].  Note that this does
                                not include MAC Control frames, since
                                MAC Control frames are generated by the
                                interface layer, and are not passed from
                                any higher layer protocol.  See section
                                3.2.6.
     
     ifOutBroadcastPkts         Refer to [RFC2863].  Note that this does
                                not include MAC Control frames, since
                                MAC Control frames are generated by the
                                interface layer, and are not passed from
                                any higher layer protocol.  See section
                                3.2.6.
     
     ifHCInOctets               64-bit versions of counters.  Required
     ifHCOutOctets              for ethernet-like interfaces that are
                                capable of operating at 20 Mb/s or
                                faster, even if the interface is
                                currently operating at less than
                                20 Mb/s.
     
     ifHCInUcastPkts            64-bit versions of packet counters.
     ifHCInMulticastPkts        Required for ethernet-like interfaces
     ifHCInBroadcastPkts        that are capable of operating at
     ifHCOutUcastPkts           640 Mb/s or faster, even if the
     ifHCOutMulticastPkts       interface is currently operating at
     ifHCOutBroadcastPkts       less than 640 Mb/s.
     
     ifLinkUpDownTrapEnable     Refer to [RFC2863].  Default is
                                'enabled'
     
     ifHighSpeed                Refer to section 3.2.8.
     
     ifPromiscuousMode          Refer to [RFC2863].
     
     ifConnectorPresent         This will normally be 'true'. It will
                                be 'false' in the case where this
                                interface uses the WAN Interface
                                Sublayer.  See [RFC3637] for details.
     
     ifAlias                    Refer to [RFC2863].
     ifCounterDiscontinuityTime Refer to [RFC2863].  Note that a
                                discontinuity in the Interface MIB
                                counters may also indicate a
                                discontinuity in some or all of the
                                counters in this MIB that are associated
                                with that interface.
     
     ifStackHigherLayer         Refer to section 3.2.1.
     ifStackLowerLayer
     ifStackStatus
     
     ifRcvAddressAddress        Refer to section 3.2.3.
     ifRcvAddressStatus
     ifRcvAddressType

3.3. Relation to the 802.3 MAU MIB

Support for the mauModIfCompl3 compliance statement of the MAU-MIB [RFC3636] is REQUIRED for Ethernet-like interfaces. This MIB is needed in order to allow applications to determine the current MAU type in use by the interface, and to control autonegotiation and duplex mode for the interface. Implementing this MIB module without implementing the MAU-MIB would leave applications with no standard way to determine the media type in use, and no standard way to control the duplex mode of the interface.

3.4. dot3StatsEtherChipSet

This document defines an object called dot3StatsEtherChipSet, which is used to identify the MAC hardware used to communicate on an interface. Previous versions of this document contained a number of OID assignments for some existing Ethernet chipsets. Maintaining that list as part of this document has proven to be problematic, so the OID assignments contained in previous versions of this document have now been moved to a separate document [RFC2666].

The dot3StatsEtherChipSet object has now been deprecated. Implementation feedback indicates that this object is much more useful in theory than in practice. The object's utility in debugging network problems in the field appears to be limited. In those cases where it may be useful, it is not sufficient, since it identifies only the MAC chip, and not the PHY, PMD, or driver. The administrative overhead involved in maintaining a central registry of chipset OIDs cannot be justified for an object whose usefulness is questionable at best.

Implementations which continue to support this object for the purpose of backwards compatibility may continue to use the values defined in [RFC2666]. For chipsets not listed in [RFC2666], implementors that wish to support this object and return a valid OBJECT IDENTIFIER value may assign OBJECT IDENTIFIERS within that part of the registration tree delegated to individual enterprises.

3.5. Mapping of IEEE 802.3 Managed Objects

   IEEE 802.3 Managed Object         Corresponding SNMP Object

oMacEntity

 .aMACID                          dot3StatsIndex or
                                  IF-MIB - ifIndex
 .aFramesTransmittedOK            IF-MIB - ifOutUCastPkts +
                                           ifOutMulticastPkts +
                                           ifOutBroadcastPkts*
 .aSingleCollisionFrames          dot3StatsSingleCollisionFrames
 .aMultipleCollisionFrames        dot3StatsMultipleCollisionFrames
 .aFramesReceivedOK               IF-MIB - ifInUcastPkts +
                                           ifInMulticastPkts +
                                           ifInBroadcastPkts*
 .aFrameCheckSequenceErrors       dot3StatsFCSErrors
 .aAlignmentErrors                dot3StatsAlignmentErrors
 .aOctetsTransmittedOK            IF-MIB - ifOutOctets*
 .aFramesWithDeferredXmissions    dot3StatsDeferredTransmissions
 .aLateCollisions                 dot3StatsLateCollisions
 .aFramesAbortedDueToXSColls      dot3StatsExcessiveCollisions
 .aFramesLostDueToIntMACXmitError dot3StatsInternalMacTransmitErrors
 .aCarrierSenseErrors             dot3StatsCarrierSenseErrors
 .aOctetsReceivedOK               IF-MIB - ifInOctets*
 .aFramesLostDueToIntMACRcvError  dot3StatsInternalMacReceiveErrors
 .aPromiscuousStatus              IF-MIB - ifPromiscuousMode
 .aReadMulticastAddressList       IF-MIB - ifRcvAddressTable
 .aMulticastFramesXmittedOK       IF-MIB - ifOutMulticastPkts*
 .aBroadcastFramesXmittedOK       IF-MIB - ifOutBroadcastPkts*
 .aMulticastFramesReceivedOK      IF-MIB - ifInMulticastPkts*
 .aBroadcastFramesReceivedOK      IF-MIB - ifInBroadcastPkts*
 .aFrameTooLongErrors             dot3StatsFrameTooLongs
 .aReadWriteMACAddress            IF-MIB - ifPhysAddress
 .aCollisionFrames                dot3CollFrequencies
 .aDuplexStatus                   dot3StatsDuplexStatus
 .aRateControlAbility             dot3StatsRateControlAbility
 .aRateControlStatus              dot3StatsRateControlStatus
 .acAddGroupAddress               IF-MIB - ifRcvAddressTable
 .acDeleteGroupAddress            IF-MIB - ifRcvAddressTable
 .acExecuteSelfTest               dot3TestLoopBack

oPHYEntity

 .aPHYID                          dot3StatsIndex or
                                  IF-MIB - ifIndex
 .aSQETestErrors                  dot3StatsSQETestErrors
 .aSymbolErrorDuringCarrier       dot3StatsSymbolErrors

oMACControlEntity

 .aMACControlID                   dot3StatsIndex or
                                  IF-MIB - ifIndex
 .aMACControlFunctionsSupported   dot3ControlFunctionsSupported and
                                  dot3ControlFunctionsEnabled
 .aUnsupportedOpcodesReceived     dot3ControlInUnknownOpcodes

oPAUSEEntity

 .aPAUSEMACCtrlFramesTransmitted  dot3OutPauseFrames
 .aPAUSEMACCtrlFramesReceived     dot3InPauseFrames

* Note that the octet counters in IF-MIB do not exactly match the definition of the octet counters in IEEE 802.3. See section 3.2.5 for details.

Also note that the packet counters in the IF-MIB do not exactly match the definition of the frame counters in IEEE 802.3. See section 3.2.6 for details.

The following IEEE 802.3 managed objects have been removed from this MIB module as a result of implementation feedback:

oMacEntity

     .aFramesWithExcessiveDeferral
     .aInRangeLengthErrors
     .aOutOfRangeLengthField
     .aMACEnableStatus
     .aTransmitEnableStatus
     .aMulticastReceiveStatus
     .acInitializeMAC

Please see [RFC1369] for the detailed reasoning on why these objects were removed.

In addition, the following IEEE 802.3 managed objects have not been included in this MIB for the following reasons.

   IEEE 802.3 Managed Object         Disposition

oMACEntity

    .aMACCapabilities                Can be derived from
                                     MAU-MIB - ifMauTypeListBits
    
     .aStretchRatio                  Implementation constant.

oPHYEntity

    .aPhyType                        Can be derived from
                                     MAU-MIB - ifMauType
    
    .aPhyTypeList                    Can be derived from
                                     MAU-MIB - ifMauTypeListBits
    
    .aMIIDetect                      Not considered useful.
    
    .aPhyAdminState                  Can already obtain interface
                                     state from IF-MIB - ifAdminStatus
                                     and MAU state from MAU-MIB -
                                     ifMauStatus.  Providing an
                                     additional state for the PHY
                                     was not considered useful.
    
    .acPhyAdminControl               Can already control interface
                                     state from IF-MIB - ifAdminStatus
                                     and MAU state from MAU-MIB -
                                     ifMauStatus.  Providing separate
                                     admin control of the PHY was not
                                     considered useful.

oMACControlEntity

    .aMACControlFramesTransmitted    Can be determined by summing the
                                     OutFrames counters for the
                                     individual control functions
    
    .aMACControlFramesReceived       Can be determined by summing the
                                     InFrames counters for the
                                     individual control functions

oPAUSEEntity

    .aPAUSELinkDelayAllowance        Not considered useful.

4. Definitions

EtherLike-MIB DEFINITIONS ::= BEGIN

IMPORTS

           MODULE-IDENTITY, OBJECT-TYPE, OBJECT-IDENTITY,
           Integer32, Counter32, Counter64, mib-2, transmission
               FROM SNMPv2-SMI
           MODULE-COMPLIANCE, OBJECT-GROUP
               FROM SNMPv2-CONF
           TruthValue
               FROM SNMPv2-TC
           ifIndex, InterfaceIndex
               FROM IF-MIB;

etherMIB MODULE-IDENTITY

           LAST-UPDATED "200309190000Z"  -- September 19, 2003
           ORGANIZATION "IETF Ethernet Interfaces and Hub MIB
                        Working Group"
           CONTACT-INFO
               "WG E-mail: hubmib@ietf.org
             To subscribe: hubmib-request@ietf.org
           
                    Chair: Dan Romascanu
                   Postal: Avaya Inc.
                           Atidum Technology Park, Bldg. 3
                           Tel Aviv 61131
                           Israel
                      Tel: +972 3 645 8414
                   E-mail: dromasca@avaya.com
           
                  Editor: John Flick
                  Postal: Hewlett-Packard Company
                          8000 Foothills Blvd. M/S 5557
                          Roseville, CA 95747-5557
                          USA
                     Tel: +1 916 785 4018
                     Fax: +1 916 785 1199
                  E-mail: johnf@rose.hp.com"

DESCRIPTION "The MIB module to describe generic objects for

ethernet-like network interfaces.

The following reference is used throughout this MIB module:

[IEEE 802.3 Std] refers to:

IEEE Std 802.3, 2002 Edition: 'IEEE Standard for Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 3: Carrier sense multiple access with collision detection (CSMA/CD) access method and physical layer specifications', as amended by IEEE Std 802.3ae-2002: 'Amendment: Media Access Control (MAC) Parameters, Physical Layer, and Management Parameters for 10 Gb/s Operation', August, 2002.

Of particular interest is Clause 30, '10 Mb/s, 100 Mb/s, 1000 Mb/s, and 10 Gb/s Management'.

Copyright © The Internet Society (2003). This version of this MIB module is part of RFC 3635; see the RFC itself for full legal notices."

           REVISION    "200309190000Z"  -- September 19, 2003
           DESCRIPTION "Updated to include support for 10 Gb/sec
                        interfaces.  This resulted in the following
                        revisions:
           
                        - Updated dot3StatsAlignmentErrors and
                          dot3StatsSymbolErrors DESCRIPTIONs to
                          reflect behaviour at 10 Gb/s
                        - Added dot3StatsRateControlAbility and
                          dot3RateControlStatus for management
                          of the Rate Control function in 10 Gb/s
                          WAN applications
                        - Added 64-bit versions of all counters
                          that are used on high-speed ethernet
                          interfaces
                        - Added object groups to contain the new
                          objects
                        - Deprecated etherStatsBaseGroup and
                          split into etherStatsBaseGroup2 and
                          etherStatsHalfDuplexGroup, so that
                          interfaces which can only operate at
                          full-duplex do not need to implement
                          half-duplex-only statistics
                        - Deprecated dot3Compliance and replaced
                          it with dot3Compliance2, which includes
                          the compliance information for the new
                          object groups

In addition, the dot3Tests and dot3Errors object identities have been deprecated, since there is no longer a standard method for using them.

This version published as RFC 3635."

           REVISION    "199908240400Z"  -- August 24, 1999
           DESCRIPTION "Updated to include support for 1000 Mb/sec
                        interfaces and full-duplex interfaces.
                        This version published as RFC 2665."
           
           REVISION    "199806032150Z"  -- June 3, 1998
           DESCRIPTION "Updated to include support for 100 Mb/sec
                        interfaces.
                        This version published as RFC 2358."

REVISION "199402030400Z" -- February 3, 1994

DESCRIPTION "Initial version, published as RFC 1650."

::= { mib-2 35 }

       etherMIBObjects OBJECT IDENTIFIER ::= { etherMIB 1 }
       
       dot3    OBJECT IDENTIFIER ::= { transmission 7 }
       
       -- the Ethernet-like Statistics group

dot3StatsTable OBJECT-TYPE

           SYNTAX     SEQUENCE OF Dot3StatsEntry
           MAX-ACCESS not-accessible
           STATUS     current
           DESCRIPTION "Statistics for a collection of ethernet-like
                       interfaces attached to a particular system.
                       There will be one row in this table for each
                       ethernet-like interface in the system."
           ::= { dot3 2 }

dot3StatsEntry OBJECT-TYPE

           SYNTAX     Dot3StatsEntry
           MAX-ACCESS not-accessible
           STATUS     current
           DESCRIPTION "Statistics for a particular interface to an
                       ethernet-like medium."
           INDEX       { dot3StatsIndex }
           ::= { dot3StatsTable 1 }

Dot3StatsEntry ::=

           SEQUENCE {
               dot3StatsIndex                      InterfaceIndex,
               dot3StatsAlignmentErrors            Counter32,
               dot3StatsFCSErrors                  Counter32,
               dot3StatsSingleCollisionFrames      Counter32,
               dot3StatsMultipleCollisionFrames    Counter32,
               dot3StatsSQETestErrors              Counter32,
               dot3StatsDeferredTransmissions      Counter32,
               dot3StatsLateCollisions             Counter32,
               dot3StatsExcessiveCollisions        Counter32,
               dot3StatsInternalMacTransmitErrors  Counter32,
               dot3StatsCarrierSenseErrors         Counter32,
               dot3StatsFrameTooLongs              Counter32,
               dot3StatsInternalMacReceiveErrors   Counter32,
               dot3StatsEtherChipSet               OBJECT IDENTIFIER,
               dot3StatsSymbolErrors               Counter32,
               dot3StatsDuplexStatus               INTEGER,
               dot3StatsRateControlAbility         TruthValue,
               dot3StatsRateControlStatus          INTEGER
           }

dot3StatsIndex OBJECT-TYPE

           SYNTAX      InterfaceIndex
           MAX-ACCESS  read-only  -- read-only since originally an
                                  -- SMIv1 index
           STATUS      current
           DESCRIPTION "An index value that uniquely identifies an
                       interface to an ethernet-like medium.  The
                       interface identified by a particular value of
                       this index is the same interface as identified
                       by the same value of ifIndex."
           REFERENCE   "RFC 2863, ifIndex"
           ::= { dot3StatsEntry 1 }

dot3StatsAlignmentErrors OBJECT-TYPE

           SYNTAX      Counter32
           MAX-ACCESS  read-only
           STATUS      current
           DESCRIPTION "A count of frames received on a particular
                       interface that are not an integral number of
                       octets in length and do not pass the FCS check.

The count represented by an instance of this object is incremented when the alignmentError status is returned by the MAC service to the LLC (or other MAC user). Received frames for which multiple error conditions pertain are, according to the conventions of IEEE 802.3 Layer Management, counted exclusively according to the error status presented to the LLC.

This counter does not increment for group encoding schemes greater than 4 bits per group.

For interfaces operating at 10 Gb/s, this counter can roll over in less than 5 minutes if it is incrementing at its maximum rate. Since that amount of time could be less than a management station's poll cycle time, in order to avoid a loss of information, a management station is advised to poll the dot3HCStatsAlignmentErrors object for 10 Gb/s or faster interfaces.

                       Discontinuities in the value of this counter can
                       occur at re-initialization of the management
                       system, and at other times as indicated by the
                       value of ifCounterDiscontinuityTime."
           REFERENCE   "[IEEE 802.3 Std.], 30.3.1.1.7,
                       aAlignmentErrors"
           ::= { dot3StatsEntry 2 }

dot3StatsFCSErrors OBJECT-TYPE

           SYNTAX      Counter32
           MAX-ACCESS  read-only
           STATUS      current
           DESCRIPTION "A count of frames received on a particular
                       interface that are an integral number of octets
                       in length but do not pass the FCS check.  This
                       count does not include frames received with
                       frame-too-long or frame-too-short error.

The count represented by an instance of this object is incremented when the frameCheckError status is returned by the MAC service to the LLC (or other MAC user). Received frames for which multiple error conditions pertain are, according to the conventions of IEEE 802.3 Layer Management, counted exclusively according to the error status presented to the LLC.

                       Note:  Coding errors detected by the physical
                       layer for speeds above 10 Mb/s will cause the
                       frame to fail the FCS check.

For interfaces operating at 10 Gb/s, this counter can roll over in less than 5 minutes if it is incrementing at its maximum rate. Since that amount of time could be less than a management station's poll cycle time, in order to avoid a loss of information, a management station is advised to poll the dot3HCStatsFCSErrors object for 10 Gb/s or faster interfaces.

                       Discontinuities in the value of this counter can
                       occur at re-initialization of the management
                       system, and at other times as indicated by the
                       value of ifCounterDiscontinuityTime."
           REFERENCE   "[IEEE 802.3 Std.], 30.3.1.1.6,
                       aFrameCheckSequenceErrors."
           ::= { dot3StatsEntry 3 }

dot3StatsSingleCollisionFrames OBJECT-TYPE

           SYNTAX      Counter32
           MAX-ACCESS  read-only
           STATUS      current
           DESCRIPTION "A count of frames that are involved in a single
                       collision, and are subsequently transmitted
                       successfully.

A frame that is counted by an instance of this object is also counted by the corresponding instance of either the ifOutUcastPkts, ifOutMulticastPkts, or ifOutBroadcastPkts, and is not counted by the corresponding instance of the dot3StatsMultipleCollisionFrames object.

This counter does not increment when the interface is operating in full-duplex mode.

                       Discontinuities in the value of this counter can
                       occur at re-initialization of the management
                       system, and at other times as indicated by the
                       value of ifCounterDiscontinuityTime."
           REFERENCE   "[IEEE 802.3 Std.], 30.3.1.1.3,
                       aSingleCollisionFrames."
           ::= { dot3StatsEntry 4 }

dot3StatsMultipleCollisionFrames OBJECT-TYPE

           SYNTAX      Counter32
           MAX-ACCESS  read-only
           STATUS      current
           DESCRIPTION "A count of frames that are involved in more

than one collision and are subsequently transmitted successfully.

A frame that is counted by an instance of this object is also counted by the corresponding instance of either the ifOutUcastPkts, ifOutMulticastPkts, or ifOutBroadcastPkts, and is not counted by the corresponding instance of the dot3StatsSingleCollisionFrames object.

This counter does not increment when the interface is operating in full-duplex mode.

                       Discontinuities in the value of this counter can
                       occur at re-initialization of the management
                       system, and at other times as indicated by the
                       value of ifCounterDiscontinuityTime."
           REFERENCE   "[IEEE 802.3 Std.], 30.3.1.1.4,
                       aMultipleCollisionFrames."
           ::= { dot3StatsEntry 5 }

dot3StatsSQETestErrors OBJECT-TYPE

           SYNTAX      Counter32
           MAX-ACCESS  read-only
           STATUS      current
           DESCRIPTION "A count of times that the SQE TEST ERROR
                       is received on a particular interface. The
                       SQE TEST ERROR is set in accordance with the
                       rules for verification of the SQE detection
                       mechanism in the PLS Carrier Sense Function as
                       described in IEEE Std. 802.3, 2000 Edition,
                       section 7.2.4.6.

This counter does not increment on interfaces operating at speeds greater than 10 Mb/s, or on interfaces operating in full-duplex mode.

                       Discontinuities in the value of this counter can
                       occur at re-initialization of the management
                       system, and at other times as indicated by the
                       value of ifCounterDiscontinuityTime."
           REFERENCE   "[IEEE 802.3 Std.], 7.2.4.6, also 30.3.2.1.4,
                       aSQETestErrors."
           ::= { dot3StatsEntry 6 }

dot3StatsDeferredTransmissions OBJECT-TYPE

           SYNTAX      Counter32
           
           MAX-ACCESS  read-only
           STATUS      current
           DESCRIPTION "A count of frames for which the first
                       transmission attempt on a particular interface
                       is delayed because the medium is busy.

The count represented by an instance of this object does not include frames involved in collisions.

This counter does not increment when the interface is operating in full-duplex mode.

                       Discontinuities in the value of this counter can
                       occur at re-initialization of the management
                       system, and at other times as indicated by the
                       value of ifCounterDiscontinuityTime."
           REFERENCE   "[IEEE 802.3 Std.], 30.3.1.1.9,
                       aFramesWithDeferredXmissions."
           ::= { dot3StatsEntry 7 }

dot3StatsLateCollisions OBJECT-TYPE

           SYNTAX      Counter32
           MAX-ACCESS  read-only
           STATUS      current
           DESCRIPTION "The number of times that a collision is
                       detected on a particular interface later than
                       one slotTime into the transmission of a packet.

A (late) collision included in a count represented by an instance of this object is also considered as a (generic) collision for purposes of other collision-related statistics.

This counter does not increment when the interface is operating in full-duplex mode.

                       Discontinuities in the value of this counter can
                       occur at re-initialization of the management
                       system, and at other times as indicated by the
                       value of ifCounterDiscontinuityTime."
           REFERENCE   "[IEEE 802.3 Std.], 30.3.1.1.10,
                       aLateCollisions."
           ::= { dot3StatsEntry 8 }

dot3StatsExcessiveCollisions OBJECT-TYPE

           SYNTAX      Counter32
           
           MAX-ACCESS  read-only
           STATUS      current
           DESCRIPTION "A count of frames for which transmission on a
                       particular interface fails due to excessive
                       collisions.

This counter does not increment when the interface is operating in full-duplex mode.

                       Discontinuities in the value of this counter can
                       occur at re-initialization of the management
                       system, and at other times as indicated by the
                       value of ifCounterDiscontinuityTime."
           REFERENCE   "[IEEE 802.3 Std.], 30.3.1.1.11,
                       aFramesAbortedDueToXSColls."
           ::= { dot3StatsEntry 9 }

dot3StatsInternalMacTransmitErrors OBJECT-TYPE

           SYNTAX      Counter32
           MAX-ACCESS  read-only
           STATUS      current
           DESCRIPTION "A count of frames for which transmission on a
                       particular interface fails due to an internal
                       MAC sublayer transmit error. A frame is only
                       counted by an instance of this object if it is
                       not counted by the corresponding instance of
                       either the dot3StatsLateCollisions object, the
                       dot3StatsExcessiveCollisions object, or the
                       dot3StatsCarrierSenseErrors object.

The precise meaning of the count represented by an instance of this object is implementation- specific. In particular, an instance of this object may represent a count of transmission errors on a particular interface that are not otherwise counted.

For interfaces operating at 10 Gb/s, this counter can roll over in less than 5 minutes if it is incrementing at its maximum rate. Since that amount of time could be less than a management station's poll cycle time, in order to avoid a loss of information, a management station is advised to poll the dot3HCStatsInternalMacTransmitErrors object for 10 Gb/s or faster interfaces.

Discontinuities in the value of this counter can

                       occur at re-initialization of the management
                       system, and at other times as indicated by the
                       value of ifCounterDiscontinuityTime."
           REFERENCE   "[IEEE 802.3 Std.], 30.3.1.1.12,
                       aFramesLostDueToIntMACXmitError."
           ::= { dot3StatsEntry 10 }

dot3StatsCarrierSenseErrors OBJECT-TYPE

           SYNTAX      Counter32
           MAX-ACCESS  read-only
           STATUS      current
           DESCRIPTION "The number of times that the carrier sense
                       condition was lost or never asserted when
                       attempting to transmit a frame on a particular
                       interface.

The count represented by an instance of this object is incremented at most once per transmission attempt, even if the carrier sense condition fluctuates during a transmission attempt.

This counter does not increment when the interface is operating in full-duplex mode.

                       Discontinuities in the value of this counter can
                       occur at re-initialization of the management
                       system, and at other times as indicated by the
                       value of ifCounterDiscontinuityTime."
           REFERENCE   "[IEEE 802.3 Std.], 30.3.1.1.13,
                       aCarrierSenseErrors."
           ::= { dot3StatsEntry 11 }
       
       -- { dot3StatsEntry 12 } is not assigned

dot3StatsFrameTooLongs OBJECT-TYPE

           SYNTAX      Counter32
           MAX-ACCESS  read-only
           STATUS      current
           DESCRIPTION "A count of frames received on a particular
                       interface that exceed the maximum permitted
                       frame size.

The count represented by an instance of this object is incremented when the frameTooLong status is returned by the MAC service to the LLC (or other MAC user). Received frames for which multiple error conditions pertain are, according to the conventions of IEEE 802.3 Layer Management, counted exclusively according to the error status presented to the LLC.

For interfaces operating at 10 Gb/s, this counter can roll over in less than 80 minutes if it is incrementing at its maximum rate. Since that amount of time could be less than a management station's poll cycle time, in order to avoid a loss of information, a management station is advised to poll the dot3HCStatsFrameTooLongs object for 10 Gb/s or faster interfaces.

                       Discontinuities in the value of this counter can
                       occur at re-initialization of the management
                       system, and at other times as indicated by the
                       value of ifCounterDiscontinuityTime."
           REFERENCE   "[IEEE 802.3 Std.], 30.3.1.1.25,
                       aFrameTooLongErrors."
           ::= { dot3StatsEntry 13 }
       
       -- { dot3StatsEntry 14 } is not assigned
       
       -- { dot3StatsEntry 15 } is not assigned

dot3StatsInternalMacReceiveErrors OBJECT-TYPE

           SYNTAX      Counter32
           MAX-ACCESS  read-only
           STATUS      current
           DESCRIPTION "A count of frames for which reception on a
                       particular interface fails due to an internal
                       MAC sublayer receive error. A frame is only
                       counted by an instance of this object if it is
                       not counted by the corresponding instance of
                       either the dot3StatsFrameTooLongs object, the
                       dot3StatsAlignmentErrors object, or the
                       dot3StatsFCSErrors object.

The precise meaning of the count represented by an instance of this object is implementation- specific. In particular, an instance of this object may represent a count of receive errors on a particular interface that are not otherwise counted.

For interfaces operating at 10 Gb/s, this counter can roll over in less than 5 minutes if it is incrementing at its maximum rate. Since that amount of time could be less than a management station's poll cycle time, in order to avoid a loss of information, a management station is advised to poll the dot3HCStatsInternalMacReceiveErrors object for 10 Gb/s or faster interfaces.

                       Discontinuities in the value of this counter can
                       occur at re-initialization of the management
                       system, and at other times as indicated by the
                       value of ifCounterDiscontinuityTime."
           REFERENCE   "[IEEE 802.3 Std.], 30.3.1.1.15,
                       aFramesLostDueToIntMACRcvError."
           ::= { dot3StatsEntry 16 }

dot3StatsEtherChipSet OBJECT-TYPE

           SYNTAX      OBJECT IDENTIFIER
           MAX-ACCESS  read-only
           STATUS      deprecated
           DESCRIPTION "******** THIS OBJECT IS DEPRECATED ********

This object contains an OBJECT IDENTIFIER which identifies the chipset used to realize the interface. Ethernet-like interfaces are typically built out of several different chips. The MIB implementor is presented with a decision of which chip to identify via this object. The implementor should identify the chip which is usually called the Medium Access Control chip.
If no such chip is easily identifiable, the implementor should identify the chip which actually gathers the transmit and receive statistics and error indications. This would allow a manager station to correlate the statistics and the chip generating them, giving it the ability to take into account any known anomalies
in the chip.

This object has been deprecated. Implementation feedback indicates that it is of limited use for debugging network problems in the field, and the administrative overhead involved in maintaining a registry of chipset OIDs is not justified."

           ::= { dot3StatsEntry 17 }

dot3StatsSymbolErrors OBJECT-TYPE

           SYNTAX      Counter32
           MAX-ACCESS  read-only
           STATUS      current
           DESCRIPTION "For an interface operating at 100 Mb/s, the
                       number of times there was an invalid data symbol
                       when a valid carrier was present.

For an interface operating in half-duplex mode at 1000 Mb/s, the number of times the receiving media is non-idle (a carrier event) for a period of time equal to or greater than slotTime, and during which there was at least one occurrence of an event that causes the PHY to indicate 'Data reception error' or 'carrier extend error' on the GMII.

For an interface operating in full-duplex mode at 1000 Mb/s, the number of times the receiving media is non-idle (a carrier event) for a period of time equal to or greater than minFrameSize, and during which there was at least one occurrence of an event that causes the PHY to indicate 'Data reception error' on the GMII.

For an interface operating at 10 Gb/s, the number of times the receiving media is non-idle (a carrier event) for a period of time equal to or greater than minFrameSize, and during which there was at least one occurrence of an event that causes the PHY to indicate 'Receive Error' on the XGMII.

The count represented by an instance of this object is incremented at most once per carrier event, even if multiple symbol errors occur during the carrier event. This count does not increment if a collision is present.

This counter does not increment when the interface is operating at 10 Mb/s.

For interfaces operating at 10 Gb/s, this counter can roll over in less than 5 minutes if it is incrementing at its maximum rate. Since that amount of time could be less than a management station's poll cycle time, in order to avoid a loss of information, a management station is advised to poll the dot3HCStatsSymbolErrors object for 10 Gb/s or faster interfaces.

                       Discontinuities in the value of this counter can
                       occur at re-initialization of the management
                       system, and at other times as indicated by the
                       value of ifCounterDiscontinuityTime."
           REFERENCE   "[IEEE 802.3 Std.], 30.3.2.1.5,
                       aSymbolErrorDuringCarrier."
           ::= { dot3StatsEntry 18 }

dot3StatsDuplexStatus OBJECT-TYPE

           SYNTAX      INTEGER {
                           unknown(1),
                           halfDuplex(2),
                           fullDuplex(3)
                       }
           MAX-ACCESS  read-only
           STATUS      current
           DESCRIPTION "The current mode of operation of the MAC
                       entity.  'unknown' indicates that the current
                       duplex mode could not be determined.

Management control of the duplex mode is accomplished through the MAU MIB. When an interface does not support autonegotiation, or when autonegotiation is not enabled, the duplex mode is controlled using ifMauDefaultType. When autonegotiation is supported and enabled, duplex mode is controlled using ifMauAutoNegAdvertisedBits. In either case, the currently operating duplex mode is reflected both in this object and in ifMauType.

                       Note that this object provides redundant
                       information with ifMauType.  Normally, redundant
                       objects are discouraged.  However, in this
                       instance, it allows a management application to
                       determine the duplex status of an interface
                       without having to know every possible value of
                       ifMauType.  This was felt to be sufficiently
                       valuable to justify the redundancy."
           REFERENCE   "[IEEE 802.3 Std.], 30.3.1.1.32,
                       aDuplexStatus."
           ::= { dot3StatsEntry 19 }

dot3StatsRateControlAbility OBJECT-TYPE

           SYNTAX      TruthValue
           MAX-ACCESS  read-only
           STATUS      current
           DESCRIPTION "'true' for interfaces operating at speeds above
                       1000 Mb/s that support Rate Control through
                       lowering the average data rate of the MAC
                       sublayer, with frame granularity, and 'false'
                       otherwise."
           REFERENCE   "[IEEE 802.3 Std.], 30.3.1.1.33,
                       aRateControlAbility."
           ::= { dot3StatsEntry 20 }

dot3StatsRateControlStatus OBJECT-TYPE

           SYNTAX      INTEGER {
                           rateControlOff(1),
                           rateControlOn(2),
                           unknown(3)
                       }
           MAX-ACCESS  read-only
           STATUS      current
           DESCRIPTION "The current Rate Control mode of operation of
                       the MAC sublayer of this interface."
           REFERENCE   "[IEEE 802.3 Std.], 30.3.1.1.34,
                       aRateControlStatus."
           ::= { dot3StatsEntry 21 }
       
       -- the Ethernet-like Collision Statistics group

-- Implementation of this group is optional; it is appropriate -- for all systems which have the necessary metering

dot3CollTable OBJECT-TYPE

           SYNTAX      SEQUENCE OF Dot3CollEntry
           MAX-ACCESS  not-accessible
           STATUS      current
           DESCRIPTION "A collection of collision histograms for a
                       particular set of interfaces."
           REFERENCE   "[IEEE 802.3 Std.], 30.3.1.1.30,
                       aCollisionFrames."
           ::= { dot3 5 }

dot3CollEntry OBJECT-TYPE

           SYNTAX      Dot3CollEntry
           MAX-ACCESS  not-accessible
           STATUS      current
           DESCRIPTION "A cell in the histogram of per-frame
                       collisions for a particular interface.  An
           
                       instance of this object represents the
                       frequency of individual MAC frames for which
                       the transmission (successful or otherwise) on a
                       particular interface is accompanied by a
                       particular number of media collisions."
           INDEX       { ifIndex, dot3CollCount }
           ::= { dot3CollTable 1 }

Dot3CollEntry ::=

           SEQUENCE {
               dot3CollCount        Integer32,
               dot3CollFrequencies  Counter32
           }

-- { dot3CollEntry 1 } is no longer in use

dot3CollCount OBJECT-TYPE

           SYNTAX      Integer32 (1..16)
           MAX-ACCESS  not-accessible
           STATUS      current
           DESCRIPTION "The number of per-frame media collisions for
                       which a particular collision histogram cell
                       represents the frequency on a particular
                       interface."
           ::= { dot3CollEntry 2 }

dot3CollFrequencies OBJECT-TYPE

           SYNTAX      Counter32
           MAX-ACCESS  read-only
           STATUS      current
           DESCRIPTION "A count of individual MAC frames for which the
                       transmission (successful or otherwise) on a
                       particular interface occurs after the
                       frame has experienced exactly the number
                       of collisions in the associated
                       dot3CollCount object.

For example, a frame which is transmitted on interface 77 after experiencing
exactly 4 collisions would be indicated by incrementing only dot3CollFrequencies.77.4. No other instance of dot3CollFrequencies would be incremented in this example.

This counter does not increment when the interface is operating in full-duplex mode.

Discontinuities in the value of this counter can

                       occur at re-initialization of the management
                       system, and at other times as indicated by the
                       value of ifCounterDiscontinuityTime."
           ::= { dot3CollEntry 3 }

dot3ControlTable OBJECT-TYPE

           SYNTAX      SEQUENCE OF Dot3ControlEntry
           MAX-ACCESS  not-accessible
           STATUS      current
           DESCRIPTION "A table of descriptive and status information
                       about the MAC Control sublayer on the
                       ethernet-like interfaces attached to a
                       particular system.  There will be one row in
                       this table for each ethernet-like interface in
                       the system which implements the MAC Control
                       sublayer.  If some, but not all, of the
                       ethernet-like interfaces in the system implement
                       the MAC Control sublayer, there will be fewer
                       rows in this table than in the dot3StatsTable."
           ::= { dot3 9 }

dot3ControlEntry OBJECT-TYPE

           SYNTAX      Dot3ControlEntry
           MAX-ACCESS  not-accessible
           STATUS      current
           DESCRIPTION "An entry in the table, containing information
                       about the MAC Control sublayer on a single
                       ethernet-like interface."
           INDEX       { dot3StatsIndex }
           ::= { dot3ControlTable 1 }

Dot3ControlEntry ::=

           SEQUENCE {
               dot3ControlFunctionsSupported       BITS,
               dot3ControlInUnknownOpcodes         Counter32,
               dot3HCControlInUnknownOpcodes       Counter64
           }

dot3ControlFunctionsSupported OBJECT-TYPE

           SYNTAX      BITS {
                           pause(0)   -- 802.3 flow control
                       }
           MAX-ACCESS  read-only
           STATUS      current
           DESCRIPTION "A list of the possible MAC Control functions
                       implemented for this interface."
           REFERENCE   "[IEEE 802.3 Std.], 30.3.3.2,
                       aMACControlFunctionsSupported."
           
           ::= { dot3ControlEntry 1 }

dot3ControlInUnknownOpcodes OBJECT-TYPE

           SYNTAX      Counter32
           MAX-ACCESS  read-only
           STATUS      current
           DESCRIPTION "A count of MAC Control frames received on this
                       interface that contain an opcode that is not
                       supported by this device.

For interfaces operating at 10 Gb/s, this counter can roll over in less than 5 minutes if it is incrementing at its maximum rate. Since that amount of time could be less than a management station's poll cycle time, in order to avoid a loss of information, a management station is advised to poll the dot3HCControlInUnknownOpcodes object for 10 Gb/s or faster interfaces.

                       Discontinuities in the value of this counter can
                       occur at re-initialization of the management
                       system, and at other times as indicated by the
                       value of ifCounterDiscontinuityTime."
           REFERENCE   "[IEEE 802.3 Std.], 30.3.3.5,
                       aUnsupportedOpcodesReceived"
           ::= { dot3ControlEntry 2 }

dot3HCControlInUnknownOpcodes OBJECT-TYPE

           SYNTAX      Counter64
           MAX-ACCESS  read-only
           STATUS      current
           DESCRIPTION "A count of MAC Control frames received on this
                       interface that contain an opcode that is not
                       supported by this device.

This counter is a 64 bit version of dot3ControlInUnknownOpcodes. It should be used on interfaces operating at 10 Gb/s or faster.

                       Discontinuities in the value of this counter can
                       occur at re-initialization of the management
                       system, and at other times as indicated by the
                       value of ifCounterDiscontinuityTime."
           REFERENCE   "[IEEE 802.3 Std.], 30.3.3.5,
                       aUnsupportedOpcodesReceived"
           ::= { dot3ControlEntry 3 }

dot3PauseTable OBJECT-TYPE

           SYNTAX      SEQUENCE OF Dot3PauseEntry
           MAX-ACCESS  not-accessible
           STATUS      current
           DESCRIPTION "A table of descriptive and status information
                       about the MAC Control PAUSE function on the
                       ethernet-like interfaces attached to a
                       particular system. There will be one row in
                       this table for each ethernet-like interface in
                       the system which supports the MAC Control PAUSE
                       function (i.e., the 'pause' bit in the
                       corresponding instance of
                       dot3ControlFunctionsSupported is set).  If some,
                       but not all, of the ethernet-like interfaces in
                       the system implement the MAC Control PAUSE
                       function (for example, if some interfaces only
                       support half-duplex), there will be fewer rows
                       in this table than in the dot3StatsTable."
           ::= { dot3 10 }

dot3PauseEntry OBJECT-TYPE

           SYNTAX      Dot3PauseEntry
           MAX-ACCESS  not-accessible
           STATUS      current
           DESCRIPTION "An entry in the table, containing information
                       about the MAC Control PAUSE function on a single
                       ethernet-like interface."
           INDEX       { dot3StatsIndex }
           ::= { dot3PauseTable 1 }
       
       Dot3PauseEntry ::=
       
           SEQUENCE {
               dot3PauseAdminMode                  INTEGER,
               dot3PauseOperMode                   INTEGER,
               dot3InPauseFrames                   Counter32,
               dot3OutPauseFrames                  Counter32,
               dot3HCInPauseFrames                 Counter64,
               dot3HCOutPauseFrames                Counter64
           }

dot3PauseAdminMode OBJECT-TYPE

           SYNTAX      INTEGER {
                           disabled(1),
                           enabledXmit(2),
                           enabledRcv(3),
                           enabledXmitAndRcv(4)
                       }
           
           MAX-ACCESS  read-write
           STATUS      current
           DESCRIPTION "This object is used to configure the default
                       administrative PAUSE mode for this interface.

This object represents the administratively-configured PAUSE mode for this interface. If auto-negotiation is not enabled or is not implemented for the active MAU attached to this interface, the value of this object determines the operational PAUSE mode of the interface whenever it is operating in full-duplex mode. In this case, a set to this object will force the interface into the specified mode.

If auto-negotiation is implemented and enabled for the MAU attached to this interface, the PAUSE mode for this interface is determined by auto-negotiation, and the value of this object denotes the mode to which the interface will automatically revert if/when auto-negotiation is later disabled. Note that when auto-negotiation is running, administrative control of the PAUSE mode may be accomplished using the ifMauAutoNegCapAdvertisedBits object in the MAU-MIB.

Note that the value of this object is ignored when the interface is not operating in full-duplex mode.

                       An attempt to set this object to
                       'enabledXmit(2)' or 'enabledRcv(3)' will fail
                       on interfaces that do not support operation
                       at greater than 100 Mb/s."
           ::= { dot3PauseEntry 1 }

dot3PauseOperMode OBJECT-TYPE

           SYNTAX      INTEGER {
                           disabled(1),
                           enabledXmit(2),
                           enabledRcv(3),
                           enabledXmitAndRcv(4)
                       }
           MAX-ACCESS  read-only
           STATUS      current
           DESCRIPTION "This object reflects the PAUSE mode currently
           
                       in use on this interface, as determined by
                       either (1) the result of the auto-negotiation
                       function or (2) if auto-negotiation is not
                       enabled or is not implemented for the active MAU
                       attached to this interface, by the value of
                       dot3PauseAdminMode.  Interfaces operating at
                       100 Mb/s or less will never return
                       'enabledXmit(2)' or 'enabledRcv(3)'.  Interfaces
                       operating in half-duplex mode will always return
                       'disabled(1)'.  Interfaces on which
                       auto-negotiation is enabled but not yet
                       completed should return the value
                       'disabled(1)'."
           ::= { dot3PauseEntry 2 }

dot3InPauseFrames OBJECT-TYPE

           SYNTAX      Counter32
           MAX-ACCESS  read-only
           STATUS      current
           DESCRIPTION "A count of MAC Control frames received on this
                       interface with an opcode indicating the PAUSE
                       operation.

This counter does not increment when the interface is operating in half-duplex mode.

For interfaces operating at 10 Gb/s, this counter can roll over in less than 5 minutes if it is incrementing at its maximum rate. Since that amount of time could be less than a management station's poll cycle time, in order to avoid a loss of information, a management station is advised to poll the dot3HCInPauseFrames object for 10 Gb/s or faster interfaces.

                       Discontinuities in the value of this counter can
                       occur at re-initialization of the management
                       system, and at other times as indicated by the
                       value of ifCounterDiscontinuityTime."
           REFERENCE   "[IEEE 802.3 Std.], 30.3.4.3,
                       aPAUSEMACCtrlFramesReceived."
           ::= { dot3PauseEntry 3 }

dot3OutPauseFrames OBJECT-TYPE

           SYNTAX      Counter32
           MAX-ACCESS  read-only
           STATUS      current

DESCRIPTION "A count of MAC Control frames transmitted on

this interface with an opcode indicating the PAUSE operation.

This counter does not increment when the interface is operating in half-duplex mode.

For interfaces operating at 10 Gb/s, this counter can roll over in less than 5 minutes if it is incrementing at its maximum rate. Since that amount of time could be less than a management station's poll cycle time, in order to avoid a loss of information, a management station is advised to poll the dot3HCOutPauseFrames object for 10 Gb/s or faster interfaces.

                       Discontinuities in the value of this counter can
                       occur at re-initialization of the management
                       system, and at other times as indicated by the
                       value of ifCounterDiscontinuityTime."
           REFERENCE   "[IEEE 802.3 Std.], 30.3.4.2,
                       aPAUSEMACCtrlFramesTransmitted."
           ::= { dot3PauseEntry 4 }

dot3HCInPauseFrames OBJECT-TYPE

           SYNTAX      Counter64
           MAX-ACCESS  read-only
           STATUS      current
           DESCRIPTION "A count of MAC Control frames received on this
                       interface with an opcode indicating the PAUSE
                       operation.

This counter does not increment when the interface is operating in half-duplex mode.

This counter is a 64 bit version of dot3InPauseFrames. It should be used on interfaces operating at 10 Gb/s or faster.

                       Discontinuities in the value of this counter can
                       occur at re-initialization of the management
                       system, and at other times as indicated by the
                       value of ifCounterDiscontinuityTime."
           REFERENCE   "[IEEE 802.3 Std.], 30.3.4.3,
                       aPAUSEMACCtrlFramesReceived."
           ::= { dot3PauseEntry 5 }

dot3HCOutPauseFrames OBJECT-TYPE

           SYNTAX      Counter64
           MAX-ACCESS  read-only
           STATUS      current
           DESCRIPTION "A count of MAC Control frames transmitted on
                       this interface with an opcode indicating the
                       PAUSE operation.

This counter does not increment when the interface is operating in half-duplex mode.

This counter is a 64 bit version of dot3OutPauseFrames. It should be used on interfaces operating at 10 Gb/s or faster.

                       Discontinuities in the value of this counter can
                       occur at re-initialization of the management
                       system, and at other times as indicated by the
                       value of ifCounterDiscontinuityTime."
           REFERENCE   "[IEEE 802.3 Std.], 30.3.4.2,
                       aPAUSEMACCtrlFramesTransmitted."
           ::= { dot3PauseEntry 6 }

dot3HCStatsTable OBJECT-TYPE

           SYNTAX      SEQUENCE OF Dot3HCStatsEntry
           MAX-ACCESS  not-accessible
           STATUS      current
           DESCRIPTION "A table containing 64-bit versions of error
                       counters from the dot3StatsTable.  The 32-bit
                       versions of these counters may roll over quite
                       quickly on higher speed ethernet interfaces.
                       The counters that have 64-bit versions in this
                       table are the counters that apply to full-duplex
                       interfaces, since 10 Gb/s and faster
                       ethernet-like interfaces do not support
                       half-duplex, and very few 1000 Mb/s
                       ethernet-like interfaces support half-duplex.

Entries in this table are recommended for interfaces capable of operating at 1000 Mb/s or faster, and are required for interfaces capable of operating at 10 Gb/s or faster. Lower speed ethernet-like interfaces do not need entries in this table, in which case there may be fewer entries in this table than in the dot3StatsTable. However, implementations containing interfaces with a mix of speeds may choose to implement entries in this table for

                       all ethernet-like interfaces."
           ::= { dot3 11 }

dot3HCStatsEntry OBJECT-TYPE

           SYNTAX      Dot3HCStatsEntry
           MAX-ACCESS  not-accessible
           STATUS      current
           DESCRIPTION "An entry containing 64-bit statistics for a
                       single ethernet-like interface."
           INDEX       { dot3StatsIndex }
           ::= { dot3HCStatsTable 1 }

Dot3HCStatsEntry ::=

           SEQUENCE {
               dot3HCStatsAlignmentErrors           Counter64,
               dot3HCStatsFCSErrors                 Counter64,
               dot3HCStatsInternalMacTransmitErrors Counter64,
               dot3HCStatsFrameTooLongs             Counter64,
               dot3HCStatsInternalMacReceiveErrors  Counter64,
               dot3HCStatsSymbolErrors              Counter64
           }

dot3HCStatsAlignmentErrors OBJECT-TYPE

           SYNTAX      Counter64
           MAX-ACCESS  read-only
           STATUS      current
           DESCRIPTION "A count of frames received on a particular
                       interface that are not an integral number of
                       octets in length and do not pass the FCS check.

The count represented by an instance of this object is incremented when the alignmentError status is returned by the MAC service to the LLC (or other MAC user). Received frames for which multiple error conditions pertain are, according to the conventions of IEEE 802.3 Layer Management, counted exclusively according to the error status presented to the LLC.

This counter does not increment for group encoding schemes greater than 4 bits per group.

This counter is a 64 bit version of dot3StatsAlignmentErrors. It should be used on interfaces operating at 10 Gb/s or faster.

Discontinuities in the value of this counter can occur at re-initialization of the management

                       system, and at other times as indicated by the
                       value of ifCounterDiscontinuityTime."
           REFERENCE   "[IEEE 802.3 Std.], 30.3.1.1.7,
                       aAlignmentErrors"
           ::= { dot3HCStatsEntry 1 }

dot3HCStatsFCSErrors OBJECT-TYPE

           SYNTAX      Counter64
           MAX-ACCESS  read-only
           STATUS      current
           DESCRIPTION "A count of frames received on a particular
                       interface that are an integral number of octets
                       in length but do not pass the FCS check.  This
                       count does not include frames received with
                       frame-too-long or frame-too-short error.

The count represented by an instance of this object is incremented when the frameCheckError status is returned by the MAC service to the LLC (or other MAC user). Received frames for which multiple error conditions pertain are, according to the conventions of IEEE 802.3 Layer Management, counted exclusively according to the error status presented to the LLC.

                       Note:  Coding errors detected by the physical
                       layer for speeds above 10 Mb/s will cause the
                       frame to fail the FCS check.

This counter is a 64 bit version of dot3StatsFCSErrors. It should be used on interfaces operating at 10 Gb/s or faster.

                       Discontinuities in the value of this counter can
                       occur at re-initialization of the management
                       system, and at other times as indicated by the
                       value of ifCounterDiscontinuityTime."
           REFERENCE   "[IEEE 802.3 Std.], 30.3.1.1.6,
                       aFrameCheckSequenceErrors."
           ::= { dot3HCStatsEntry 2 }

dot3HCStatsInternalMacTransmitErrors OBJECT-TYPE

           SYNTAX      Counter64
           MAX-ACCESS  read-only
           STATUS      current
           DESCRIPTION "A count of frames for which transmission on a
                       particular interface fails due to an internal
                       MAC sublayer transmit error. A frame is only

counted by an instance of this object if it is not counted by the corresponding instance of either the dot3StatsLateCollisions object, the dot3StatsExcessiveCollisions object, or the dot3StatsCarrierSenseErrors object.

The precise meaning of the count represented by an instance of this object is implementation- specific. In particular, an instance of this object may represent a count of transmission errors on a particular interface that are not otherwise counted.

This counter is a 64 bit version of dot3StatsInternalMacTransmitErrors. It should be used on interfaces operating at 10 Gb/s or faster.

                       Discontinuities in the value of this counter can
                       occur at re-initialization of the management
                       system, and at other times as indicated by the
                       value of ifCounterDiscontinuityTime."
           REFERENCE   "[IEEE 802.3 Std.], 30.3.1.1.12,
                       aFramesLostDueToIntMACXmitError."
           ::= { dot3HCStatsEntry 3 }

dot3HCStatsFrameTooLongs OBJECT-TYPE

           SYNTAX      Counter64
           MAX-ACCESS  read-only
           STATUS      current
           DESCRIPTION "A count of frames received on a particular
                       interface that exceed the maximum permitted
                       frame size.

The count represented by an instance of this object is incremented when the frameTooLong status is returned by the MAC service to the LLC (or other MAC user). Received frames for which multiple error conditions pertain are, according to the conventions of IEEE 802.3 Layer Management, counted exclusively according to the error status presented to the LLC.

This counter is a 64 bit version of dot3StatsFrameTooLongs. It should be used on interfaces operating at 10 Gb/s or faster.

Discontinuities in the value of this counter can

                       occur at re-initialization of the management
                       system, and at other times as indicated by the
                       value of ifCounterDiscontinuityTime."
           REFERENCE   "[IEEE 802.3 Std.], 30.3.1.1.25,
                       aFrameTooLongErrors."
           ::= { dot3HCStatsEntry 4 }

dot3HCStatsInternalMacReceiveErrors OBJECT-TYPE

           SYNTAX      Counter64
           MAX-ACCESS  read-only
           STATUS      current
           DESCRIPTION "A count of frames for which reception on a
                       particular interface fails due to an internal
                       MAC sublayer receive error. A frame is only
                       counted by an instance of this object if it is
                       not counted by the corresponding instance of
                       either the dot3StatsFrameTooLongs object, the
                       dot3StatsAlignmentErrors object, or the
                       dot3StatsFCSErrors object.

The precise meaning of the count represented by an instance of this object is implementation- specific. In particular, an instance of this object may represent a count of receive errors on a particular interface that are not otherwise counted.

This counter is a 64 bit version of dot3StatsInternalMacReceiveErrors. It should be used on interfaces operating at 10 Gb/s or faster.

                       Discontinuities in the value of this counter can
                       occur at re-initialization of the management
                       system, and at other times as indicated by the
                       value of ifCounterDiscontinuityTime."
           REFERENCE   "[IEEE 802.3 Std.], 30.3.1.1.15,
                       aFramesLostDueToIntMACRcvError."
           ::= { dot3HCStatsEntry 5 }

dot3HCStatsSymbolErrors OBJECT-TYPE

           SYNTAX      Counter64
           MAX-ACCESS  read-only
           STATUS      current
           DESCRIPTION "For an interface operating at 100 Mb/s, the
                       number of times there was an invalid data symbol
                       when a valid carrier was present.

For an interface operating in half-duplex mode at 1000 Mb/s, the number of times the receiving media is non-idle (a carrier event) for a period of time equal to or greater than slotTime, and during which there was at least one occurrence of an event that causes the PHY to indicate 'Data reception error' or 'carrier extend error' on the GMII.

For an interface operating in full-duplex mode at 1000 Mb/s, the number of times the receiving media is non-idle (a carrier event) for a period of time equal to or greater than minFrameSize, and during which there was at least one occurrence of an event that causes the PHY to indicate 'Data reception error' on the GMII.

For an interface operating at 10 Gb/s, the number of times the receiving media is non-idle (a carrier event) for a period of time equal to or greater than minFrameSize, and during which there was at least one occurrence of an event that causes the PHY to indicate 'Receive Error' on the XGMII.

The count represented by an instance of this object is incremented at most once per carrier event, even if multiple symbol errors occur during the carrier event. This count does not increment if a collision is present.

This counter is a 64 bit version of dot3StatsSymbolErrors. It should be used on interfaces operating at 10 Gb/s or faster.

                       Discontinuities in the value of this counter can
                       occur at re-initialization of the management
                       system, and at other times as indicated by the
                       value of ifCounterDiscontinuityTime."
           REFERENCE   "[IEEE 802.3 Std.], 30.3.2.1.5,
                       aSymbolErrorDuringCarrier."
           ::= { dot3HCStatsEntry 6 }

-- 802.3 Tests

       dot3Tests   OBJECT IDENTIFIER ::= { dot3 6 }
       
       dot3Errors  OBJECT IDENTIFIER ::= { dot3 7 }

-- TDR Test

dot3TestTdr OBJECT-IDENTITY

           STATUS      deprecated
           DESCRIPTION "******** THIS IDENTITY IS DEPRECATED *******

The Time-Domain Reflectometry (TDR) test is specific to ethernet-like interfaces of type 10Base5 and 10Base2. The TDR value may be useful in determining the approximate distance to a cable fault. It is advisable to repeat this test to check for a consistent resulting TDR value, to verify that there is a fault.

A TDR test returns as its result the time interval, measured in 10 MHz ticks or 100 nsec units, between the start of TDR test transmission and the subsequent detection of a collision or deassertion of carrier. On successful completion of a TDR test, the result is stored as the value of an appropriate instance of an appropriate vendor specific MIB object, and the OBJECT IDENTIFIER of that instance is stored in the appropriate instance of the appropriate test result code object (thereby indicating where the result has been stored).

                       This object identity has been deprecated, since
                       the ifTestTable in the IF-MIB was deprecated,
                       and there is no longer a standard mechanism for
                       initiating an interface test.  This left no
                       standard way of using this object identity."
           ::= { dot3Tests 1 }
       
       -- Loopback Test

dot3TestLoopBack OBJECT-IDENTITY

           STATUS      deprecated
           DESCRIPTION "******** THIS IDENTITY IS DEPRECATED *******

This test configures the MAC chip and executes an internal loopback test of memory, data paths, and the MAC chip logic. This loopback test can only be executed if the interface is offline. Once the test has completed, the MAC chip should be reinitialized for network operation, but it should remain offline.

If an error occurs during a test, the appropriate test result object will be set to indicate a failure. The two OBJECT IDENTIFIER values dot3ErrorInitError and dot3ErrorLoopbackError may be used to provided more information as values for an appropriate test result code object.

                       This object identity has been deprecated, since
                       the ifTestTable in the IF-MIB was deprecated,
                       and there is no longer a standard mechanism for
                       initiating an interface test.  This left no
                       standard way of using this object identity."
           ::= { dot3Tests 2 }

dot3ErrorInitError OBJECT-IDENTITY

           STATUS      deprecated
           DESCRIPTION "******** THIS IDENTITY IS DEPRECATED *******

Couldn't initialize MAC chip for test.

                       This object identity has been deprecated, since
                       the ifTestTable in the IF-MIB was deprecated,
                       and there is no longer a standard mechanism for
                       initiating an interface test.  This left no
                       standard way of using this object identity."
           ::= { dot3Errors 1 }

dot3ErrorLoopbackError OBJECT-IDENTITY

           STATUS      deprecated
           DESCRIPTION "******** THIS IDENTITY IS DEPRECATED *******

Expected data not received (or not received correctly) in loopback test.

                       This object identity has been deprecated, since
                       the ifTestTable in the IF-MIB was deprecated,
                       and there is no longer a standard mechanism for
                       initiating an interface test.  This left no
                       standard way of using this object identity."
           ::= { dot3Errors 2 }
       
       -- { dot3 8 }, the dot3ChipSets tree, is defined in [RFC2666]
       
       -- conformance information
       etherConformance OBJECT IDENTIFIER ::= { etherMIB 2 }
       
       etherGroups      OBJECT IDENTIFIER ::= { etherConformance 1 }
       etherCompliances OBJECT IDENTIFIER ::= { etherConformance 2 }
       
       -- compliance statements

etherCompliance MODULE-COMPLIANCE

           STATUS      deprecated
           DESCRIPTION "******** THIS COMPLIANCE IS DEPRECATED ********

The compliance statement for managed network entities which have ethernet-like network interfaces.

This compliance is deprecated and replaced by dot3Compliance."

           MODULE  -- this module
               MANDATORY-GROUPS { etherStatsGroup }
           
               GROUP       etherCollisionTableGroup
               DESCRIPTION "This group is optional. It is appropriate
                           for all systems which have the necessary
                           metering. Implementation in such systems is
                           highly recommended."
           ::= { etherCompliances 1 }

ether100MbsCompliance MODULE-COMPLIANCE

           STATUS      deprecated
           DESCRIPTION "******** THIS COMPLIANCE IS DEPRECATED ********

The compliance statement for managed network entities which have 100 Mb/sec ethernet-like network interfaces.

This compliance is deprecated and replaced by dot3Compliance."

           MODULE  -- this module
               MANDATORY-GROUPS { etherStats100MbsGroup }
           
               GROUP       etherCollisionTableGroup
               DESCRIPTION "This group is optional. It is appropriate
                           for all systems which have the necessary
                           metering. Implementation in such systems is
                           highly recommended."
           ::= { etherCompliances 2 }

dot3Compliance MODULE-COMPLIANCE

           STATUS      deprecated
           DESCRIPTION "******** THIS COMPLIANCE IS DEPRECATED ********

The compliance statement for managed network entities which have ethernet-like network interfaces.

This compliance is deprecated and replaced by dot3Compliance2."

           MODULE  -- this module
               MANDATORY-GROUPS { etherStatsBaseGroup }
           
               GROUP       etherDuplexGroup
               DESCRIPTION "This group is mandatory for all
                           ethernet-like network interfaces which are
                           capable of operating in full-duplex mode.
                           It is highly recommended for all
                           ethernet-like network interfaces."
           
               GROUP       etherStatsLowSpeedGroup
               DESCRIPTION "This group is mandatory for all
                           ethernet-like network interfaces which are
                           capable of operating at 10 Mb/s or slower in
                           half-duplex mode."
           
               GROUP       etherStatsHighSpeedGroup
               DESCRIPTION "This group is mandatory for all
                           ethernet-like network interfaces which are
                           capable of operating at 100 Mb/s or faster."
           
               GROUP       etherControlGroup
               DESCRIPTION "This group is mandatory for all
                           ethernet-like network interfaces that
                           support the MAC Control sublayer."
           
               GROUP       etherControlPauseGroup
               DESCRIPTION "This group is mandatory for all
                           ethernet-like network interfaces that
                           support the MAC Control PAUSE function."
           
               GROUP       etherCollisionTableGroup
               DESCRIPTION "This group is optional. It is appropriate
                           for all ethernet-like network interfaces
                           which are capable of operating in
                           half-duplex mode and have the necessary
                           metering. Implementation in systems with
           
                           such interfaces is highly recommended."
           ::= { etherCompliances 3 }

dot3Compliance2 MODULE-COMPLIANCE

               STATUS      current
               DESCRIPTION "The compliance statement for managed network
                           entities which have ethernet-like network
                           interfaces.
               
                           Note that compliance with this MIB module
                           requires compliance with the ifCompliance3
                           MODULE-COMPLIANCE statement of the IF-MIB
                           (RFC2863).  In addition, compliance with this
                           MIB module requires compliance  with the
                           mauModIfCompl3 MODULE-COMPLIANCE statement of
                           the MAU-MIB (RFC3636)."
           
           MODULE  -- this module
               MANDATORY-GROUPS { etherStatsBaseGroup2 }
           
               GROUP       etherDuplexGroup
               DESCRIPTION "This group is mandatory for all
                           ethernet-like network interfaces which are
                           capable of operating in full-duplex mode.
                           It is highly recommended for all
                           ethernet-like network interfaces."
           
               GROUP       etherRateControlGroup
               DESCRIPTION "This group is mandatory for all
                           ethernet-like network interfaces which are
                           capable of operating at speeds faster than
                           1000 Mb/s. It is highly recommended for all
                           ethernet-like network interfaces."
           
               GROUP       etherStatsLowSpeedGroup
               DESCRIPTION "This group is mandatory for all
                           ethernet-like network interfaces which are
                           capable of operating at 10 Mb/s or slower in
                           half-duplex mode."
           
               GROUP       etherStatsHighSpeedGroup
               DESCRIPTION "This group is mandatory for all
                           ethernet-like network interfaces which are
                           capable of operating at 100 Mb/s or faster."

GROUP etherStatsHalfDuplexGroup

DESCRIPTION "This group is mandatory for all

ethernet-like network interfaces which are

capable of operating in half-duplex mode."

               GROUP       etherHCStatsGroup
               DESCRIPTION "This group is mandatory for all
                           ethernet-like network interfaces which are
                           capable of operating at 10 Gb/s or faster.
                           It is recommended for all ethernet-like
                           network interfaces which are capable of
                           operating at 1000 Mb/s or faster."
               
               GROUP       etherControlGroup
               DESCRIPTION "This group is mandatory for all
                           ethernet-like network interfaces that
                           support the MAC Control sublayer."
               
               GROUP       etherHCControlGroup
               DESCRIPTION "This group is mandatory for all
                           ethernet-like network interfaces that
                           support the MAC Control sublayer and are
                           capable of operating at 10 Gb/s or faster."
               
               GROUP       etherControlPauseGroup
               DESCRIPTION "This group is mandatory for all
                           ethernet-like network interfaces that
                           support the MAC Control PAUSE function."
               
               GROUP       etherHCControlPauseGroup
               DESCRIPTION "This group is mandatory for all
                           ethernet-like network interfaces that
                           support the MAC Control PAUSE function and
                           are capable of operating at 10 Gb/s or
                           faster."
           
               GROUP       etherCollisionTableGroup
               DESCRIPTION "This group is optional. It is appropriate
                           for all ethernet-like network interfaces
                           which are capable of operating in
                           half-duplex mode and have the necessary
                           metering. Implementation in systems with
                           such interfaces is highly recommended."
           ::= { etherCompliances 4 }

-- units of conformance

etherStatsGroup OBJECT-GROUP

OBJECTS { dot3StatsIndex,

dot3StatsAlignmentErrors,

dot3StatsFCSErrors,

                         dot3StatsSingleCollisionFrames,
                         dot3StatsMultipleCollisionFrames,
                         dot3StatsSQETestErrors,
                         dot3StatsDeferredTransmissions,
                         dot3StatsLateCollisions,
                         dot3StatsExcessiveCollisions,
                         dot3StatsInternalMacTransmitErrors,
                         dot3StatsCarrierSenseErrors,
                         dot3StatsFrameTooLongs,
                         dot3StatsInternalMacReceiveErrors,
                         dot3StatsEtherChipSet
                       }
           STATUS      deprecated
           DESCRIPTION "********* THIS GROUP IS DEPRECATED **********

A collection of objects providing information applicable to all ethernet-like network interfaces.

                       This object group has been deprecated and
                       replaced by etherStatsBaseGroup and
                       etherStatsLowSpeedGroup."
           ::= { etherGroups 1 }

etherCollisionTableGroup OBJECT-GROUP

           OBJECTS     { dot3CollFrequencies
                       }
           STATUS      current
           DESCRIPTION "A collection of objects providing a histogram
                       of packets successfully transmitted after
                       experiencing exactly N collisions."
           ::= { etherGroups 2 }

etherStats100MbsGroup OBJECT-GROUP

           OBJECTS     { dot3StatsIndex,
                         dot3StatsAlignmentErrors,
                         dot3StatsFCSErrors,
                         dot3StatsSingleCollisionFrames,
                         dot3StatsMultipleCollisionFrames,
                         dot3StatsDeferredTransmissions,
                         dot3StatsLateCollisions,
                         dot3StatsExcessiveCollisions,
                         dot3StatsInternalMacTransmitErrors,
                         dot3StatsCarrierSenseErrors,
                         dot3StatsFrameTooLongs,
                         dot3StatsInternalMacReceiveErrors,
                         dot3StatsEtherChipSet,
                         dot3StatsSymbolErrors
           
                       }
           STATUS      deprecated
           DESCRIPTION "********* THIS GROUP IS DEPRECATED **********

A collection of objects providing information applicable to 100 Mb/sec ethernet-like network interfaces.

                       This object group has been deprecated and
                       replaced by etherStatsBaseGroup and
                       etherStatsHighSpeedGroup."
           ::= { etherGroups 3 }

etherStatsBaseGroup OBJECT-GROUP

           OBJECTS     { dot3StatsIndex,
                         dot3StatsAlignmentErrors,
                         dot3StatsFCSErrors,
                         dot3StatsSingleCollisionFrames,
                         dot3StatsMultipleCollisionFrames,
                         dot3StatsDeferredTransmissions,
                         dot3StatsLateCollisions,
                         dot3StatsExcessiveCollisions,
                         dot3StatsInternalMacTransmitErrors,
                         dot3StatsCarrierSenseErrors,
                         dot3StatsFrameTooLongs,
                         dot3StatsInternalMacReceiveErrors
                       }
           STATUS      deprecated
           DESCRIPTION "********* THIS GROUP IS DEPRECATED **********

A collection of objects providing information applicable to all ethernet-like network interfaces.

                       This object group has been deprecated and
                       replaced by etherStatsBaseGroup2 and
                       etherStatsHalfDuplexGroup, to separate
                       objects which must be implemented by all
                       ethernet-like network interfaces from
                       objects that need only be implemented on
                       ethernet-like network interfaces that are
                       capable of half-duplex operation."
           ::= { etherGroups 4 }

etherStatsLowSpeedGroup OBJECT-GROUP

           OBJECTS     { dot3StatsSQETestErrors }
           STATUS      current
           DESCRIPTION "A collection of objects providing information
                       applicable to ethernet-like network interfaces
                       capable of operating at 10 Mb/s or slower in
                       half-duplex mode."
           ::= { etherGroups 5 }

etherStatsHighSpeedGroup OBJECT-GROUP

           OBJECTS     { dot3StatsSymbolErrors }
           STATUS      current
           DESCRIPTION "A collection of objects providing information
                       applicable to ethernet-like network interfaces
                       capable of operating at 100 Mb/s or faster."
           ::= { etherGroups 6 }

etherDuplexGroup OBJECT-GROUP

           OBJECTS     { dot3StatsDuplexStatus }
           STATUS      current
           DESCRIPTION "A collection of objects providing information
                       about the duplex mode of an ethernet-like
                       network interface."
           ::= { etherGroups 7 }

etherControlGroup OBJECT-GROUP

           OBJECTS     { dot3ControlFunctionsSupported,
                         dot3ControlInUnknownOpcodes
                       }
           STATUS      current
           DESCRIPTION "A collection of objects providing information
                       about the MAC Control sublayer on ethernet-like
                       network interfaces."
           ::= { etherGroups 8 }

etherControlPauseGroup OBJECT-GROUP

           OBJECTS     { dot3PauseAdminMode,
                         dot3PauseOperMode,
                         dot3InPauseFrames,
                         dot3OutPauseFrames
                       }
           STATUS      current
           DESCRIPTION "A collection of objects providing information
                       about and control of the MAC Control PAUSE
                       function on ethernet-like network interfaces."
           ::= { etherGroups 9 }

etherStatsBaseGroup2 OBJECT-GROUP

           OBJECTS     { dot3StatsIndex,
                         dot3StatsAlignmentErrors,
                         dot3StatsFCSErrors,
                         dot3StatsInternalMacTransmitErrors,
           
                         dot3StatsFrameTooLongs,
                         dot3StatsInternalMacReceiveErrors
                       }
           STATUS      current
           DESCRIPTION "A collection of objects providing information
                       applicable to all ethernet-like network
                       interfaces."
           ::= { etherGroups 10 }

etherStatsHalfDuplexGroup OBJECT-GROUP

           OBJECTS     { dot3StatsSingleCollisionFrames,
                         dot3StatsMultipleCollisionFrames,
                         dot3StatsDeferredTransmissions,
                         dot3StatsLateCollisions,
                         dot3StatsExcessiveCollisions,
                         dot3StatsCarrierSenseErrors
                       }
           STATUS      current
           DESCRIPTION "A collection of objects providing information
                       applicable only to half-duplex ethernet-like
                       network interfaces."
           ::= { etherGroups 11 }

etherHCStatsGroup OBJECT-GROUP

           OBJECTS     { dot3HCStatsAlignmentErrors,
                         dot3HCStatsFCSErrors,
                         dot3HCStatsInternalMacTransmitErrors,
                         dot3HCStatsFrameTooLongs,
                         dot3HCStatsInternalMacReceiveErrors,
                         dot3HCStatsSymbolErrors
                       }
           STATUS      current
           DESCRIPTION "A collection of objects providing high-capacity
                       statistics applicable to higher-speed
                       ethernet-like network interfaces."
           ::= { etherGroups 12 }

etherHCControlGroup OBJECT-GROUP

           OBJECTS     { dot3HCControlInUnknownOpcodes }
           STATUS      current
           DESCRIPTION "A collection of objects providing high-capacity
                       statistics for the MAC Control sublayer on
                       higher-speed ethernet-like network interfaces."
           ::= { etherGroups 13 }

etherHCControlPauseGroup OBJECT-GROUP

           OBJECTS     { dot3HCInPauseFrames,
                         dot3HCOutPauseFrames
           
                       }
           STATUS      current
           DESCRIPTION "A collection of objects providing high-capacity
                       statistics for the MAC Control PAUSE function on
                       higher-speed ethernet-like network interfaces."
           ::= { etherGroups 14 }

etherRateControlGroup OBJECT-GROUP

           OBJECTS     { dot3StatsRateControlAbility,
                         dot3StatsRateControlStatus
                       }
           STATUS      current
           DESCRIPTION "A collection of objects providing information
                       about the Rate Control function on ethernet-like
                       interfaces."
           ::= { etherGroups 15 }
   
   END

5. Intellectual Property Statement

The IETF takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on the IETF's procedures with respect to rights in standards-track and standards-related documentation can be found in BCP-11. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification can be obtained from the IETF Secretariat.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to practice this standard. Please address the information to the IETF Executive Director.

6. Acknowledgements

This document was produced by the IETF Ethernet Interfaces and Hub MIB Working Group, whose efforts were greatly advanced by the contributions of the following people:

Ran Atkinson
Mike Ayers
Mike Heard
Jeffrey Johnson
Lynn Kubinec
Kam Lam
Kerry McDonald
Steve McRobert
K.C. Norseth
Dan Romascanu
Randy Presuhn
Andrew Smith
Kaj Tesink
Geoff Thompson

This document is based on the Proposed Standard Ethernet MIB, RFC 2665 [RFC2665], edited by John Flick of Hewlett-Packard and Jeffrey Johnson of RedBack Networks and produced by the Ethernet Interfaces and Hub MIB Working Group. It extends that document by providing support for 10 Gb/s Ethernet interfaces as defined in [IEEE802.3ae].

RFC 2665, in turn, is based on the Proposed Standard Ethernet MIB, RFC 2358 [RFC2358], edited by John Flick of Hewlett-Packard and Jeffrey Johnson of RedBack Networks and produced by the 802.3 Hub MIB Working Group. It extends that document by providing support for full-duplex Ethernet interfaces and 1000 Mb/sec Ethernet interfaces as outlined in [IEEE802.3].

RFC 2358, in turn, is almost completely based on both the Standard Ethernet MIB, RFC 1643 [RFC1643], and the Proposed Standard Ethernet MIB using the SNMPv2 SMI, RFC 1650 [RFC1650], both of which were edited by Frank Kastenholz of FTP Software and produced by the Interfaces MIB Working Group. RFC 2358 extends those documents by providing support for 100 Mb/sec ethernet interfaces.

RFC 1643 and RFC 1650, in turn, are based on the Draft Standard Ethernet MIB, RFC 1398 [RFC1398], also edited by Frank Kastenholz and produced by the Ethernet MIB Working Group.

RFC 1398, in turn, is based on the Proposed Standard Ethernet MIB, RFC 1284 [RFC1284], which was edited by John Cook of Chipcom and produced by the Transmission MIB Working Group. The Ethernet MIB Working Group gathered implementation experience of the variables specified in RFC 1284, documented that experience in RFC 1369 [RFC1369], and used that information to develop this revised MIB.

RFC 1284, in turn, is based on a document written by Frank Kastenholz, then of Interlan, entitled IEEE 802.3 Layer Management Draft M compatible MIB for TCP/IP Networks [KASTEN]. This document was modestly reworked, initially by the SNMP Working Group, and then by the Transmission Working Group, to reflect the current conventions for defining objects for MIB interfaces. James Davin, of the MIT Laboratory for Computer Science, and Keith McCloghrie of Hughes LAN Systems, contributed to later drafts of this memo. Marshall Rose of Performance Systems International, Inc. converted the document into RFC 1212 [RFC1212] concise format. Anil Rijsinghani of DEC contributed text that more adequately describes the TDR test. Thanks to Frank Kastenholz of Interlan and Louis Steinberg of IBM for their experimentation.

7. Normative References

   [RFC2119]     Bradner, S., "Key words for use in RFCs to Indicate
                 Requirements Levels", BCP 14, RFC 2119, March 1997.
   
   [RFC2578]     McCloghrie, K., Perkins, D., Schoenwaelder, J., Case,
                 J., Rose, M. and S. Waldbusser, "Structure of
                 Management Information Version 2 (SMIv2)", STD 58, RFC
                 2578, April 1999.
   
   [RFC2579]     McCloghrie, K., Perkins, D., Schoenwaelder, J., Case,
                 J., Rose, M. and S. Waldbusser, "Textual Conventions
                 for SMIv2", STD 58, RFC 2579, April 1999.
   
   [RFC2580]     McCloghrie, K., Perkins, D., Schoenwaelder, J., Case,
                 J., Rose, M. and S. Waldbusser, "Conformance Statements
                 for SMIv2", STD 58, RFC 2580, April 1999.
   
   [RFC2863]     McCloghrie, K. and F. Kastenholz, "The Interfaces Group
                 MIB using SMIv2", RFC 2863, June 2000.
   
   [IEEE802.3]   IEEE, IEEE Std 802.3, 2002 Edition: "Carrier Sense
                 Multiple Access with Collision Detection (CSMA/CD)
                 Access Method and Physical Layer Specifications", March
                 2002.
   
   [IEEE802.3ae] IEEE, IEEE Std 802.3ae-2002, "Amendment: Media Access
                 Control (MAC) Parameters, Physical Layers, and
                 Management Parameters for 10 Gb/s Operation", August,
                 2002.
   
   [RFC3636]     Flick, J., "Definitions of Managed Objects for IEEE
                 802.3 Medium Attachment Units (MAUs) using SMIv2", RFC
                 3636, September 2003.

8. Informative References

   [RFC1212]     Rose, M. and K. McCloghrie, Editors, "Concise MIB
                 Definitions", STD 16, RFC 1212, March 1991.
   
   [RFC1213]     McCloghrie, K. and M. Rose, Editors, "Management
                 Information Base for Network Management of TCP/IP-based
                 internets: MIB-II", STD 17, RFC 1213, March 1991.
   
   [RFC1284]     Cook, J., "Definitions of Managed Objects for
                 Ethernet-Like Interface Types", RFC 1284, December
                 1991.
   
   [RFC1369]     Kastenholz, F., "Implementation Notes and Experience
                 for The Internet Ethernet MIB", RFC 1369, October 1992.
   
   [RFC1398]     Kastenholz, F., "Definitions of Managed Objects for the
                 Ethernet-like Interface Types", RFC 1398, January 1993.
   
   [RFC1643]     Kastenholz, F., "Definitions of Managed Objects for the
                 Ethernet-like Interface Types", STD 50, RFC 1643, July
                 1994.
   
   [RFC1650]     Kastenholz, F., "Definitions of Managed Objects for the
                 Ethernet-like Interface Types using SMIv2", RFC 1650,
                 August 1994.
   
   [RFC2358]     Flick, J. and J. Johnson, "Definitions of Managed
                 Objects for the Ethernet-like Interface Types", RFC
                 2358, June 1998.
   
   [RFC2665]     Flick, J. and J. Johnson, "Definitions of Managed
                 Objects for the Ethernet-like Interface Types", RFC
                 2665, August 1999.
   
   [RFC2666]     Flick, J., "Definitions of Object Identifiers for
                 Identifying Ethernet Chip Sets", RFC 2666, August 1999.
   
   [RFC3410]     Case, J., Mundy, R., Partain, D. and B. Stewart,
                 "Introduction and Applicability Statements for
                 Internet-Standard Network Management Framework", RFC
                 3410, December 2002.
   
   [CASE]        Case, J., and C. Partridge, "Case Diagrams: A First
                 Step to Diagrammed Management Information Bases",
                 Computer Communications Review, 19(1):13-16, January
                 1989.
   
   [RFC3637]     Heard, C., "Definitions of Managed Objects for the
                 Ethernet WAN Interface Sublayer", RFC 3637, September
                 2003.
   
   [KASTEN]      Kastenholz, F., "IEEE 802.3 Layer Management Draft
                 compatible MIB for TCP/IP Networks", electronic mail
                 message to mib-wg@nnsc.nsf.net, 9 June 1989.

9. Security Considerations

There is one management object defined in this MIB that has a MAX- ACCESS clause of read-write. That object, dot3PauseAdminMode, may be used to change the flow control configuration on a network interface, which may result in dropped packets, or sending flow control packets on links where the link partner will not understand them. Either action could be detrimental to network performance.

Such objects may be considered sensitive or vulnerable in some network environments. The support for SET operations in a non-secure environment without proper protection can have a negative effect on network operations.

Some of the readable objects in this MIB module (i.e., objects with a MAX-ACCESS other than not-accessible) may be considered sensitive or vulnerable in some network environments. In particular, the dot3StatsEtherChipSet object may be considered sensitive in many environments, since it would allow an intruder to obtain information about which vendor's equipment is in use on the network. Note that this object has been deprecated. However, some implementors may still choose to implement it for backwards compatability.

Most of the objects in this MIB module contain statistical information about particular network links. In some network environments, this information may be considered sensitive.

It is thus important to control even GET and/or NOTIFY access to these objects and possibly to even encrypt the values of these objects when sending them over the network via SNMP.

SNMP versions prior to SNMPv3 did not include adequate security. Even if the network itself is secure (for example by using IPSec), even then, there is no control as to who on the secure network is allowed to access and GET/SET (read/change/create/delete) the objects in this MIB module.

It is recommended that the implementors consider the security features as provided by the SNMPv3 framework (see [RFC3410], section 8), including full support for the SNMPv3 cryptographic mechanisms (for authentication and privacy).

Furthermore, deployment of SNMP versions prior to SNMPv3 is NOT RECOMMENDED. Instead, it is RECOMMENDED to deploy SNMPv3 and to enable cryptographic security. It is then a customer/operator responsibility to ensure that the SNMP entity giving access to an instance of this MIB module is properly configured to give access to the objects only to those principals (users) that have legitimate rights to indeed GET or SET (change/create/delete) them.

10. IANA Considerations

This document does not define any new name space to be administered by IANA. However, section 3.2.4 does specify that some of the defined values in a current IANA-maintained name space are to be marked as deprecated or obsolete. In particular, the following enumerated values in the IANAifType TEXTUAL-CONVENTION in the IANAifType-MIB module have had an ASN.1 comment added by IANA stating that they have been deprecated:

       - iso88032Csmacd(7)
       - starLan(11)

In addition, the following enumerated values have had an ASN.1 comment added by IANA stating that they are obsolete:

       - fastEther(62)
       - fastEtherFX(69)
       - gigabitEthernet(117)

In all of the above cases, the ASN.1 comment indicates that ethernetCsmacd(6) should be used instead of these values.

A. Change Log

A.1. Changes since RFC 2665

This section enumerates changes made to RFC 2665 to produce this document.

      (1)   Updated references to the IEEE 802.3 standard to
      
            refer to the 2002 edition.
      
      (2)   Added reference to IEEE 802.3ae-2002.
      
      (3)   Updated WG e-mail address.
      
      (4)   The following DESCRIPTION clauses have been updated
            to reflect behaviour on 10 Gb/s interfaces:
            dot3StatsAlignmentErrors and dot3StatsSymbolErrors.
      
      (5)   The following objects have been added for management
            of the Rate Control function in WAN applications of
            ethernet:  dot3StatsRateControlAbility and
            dot3StatsRateControlStatus.
      
      (6)   The following 64-bit counters have been added to
            support operation on high-speed ethernet interfaces:
            dot3HCControlInUnknownOpcodes, dot3HCInPauseFrames,
            dot3HCOutPauseFrames, dot3HCStatsAlignmentErrors,
            dot3HCStatsFCSErrors, dot3HCStatsFrameTooLongs,
            dot3HCStatsInternalMacTransmitErrors,
            dot3HCStatsInternalMacReceiveErrors,
            dot3HCStatsSymbolErrors
      
      (7)   Object groups and compliances have been added to
            contain the new objects.
      
      (8)   The MODULE-IDENTITY clause has been updated to
            reflect the changes in the MIB module.
      
      (9)   Use of the various ifType values for ethernet has
            been clarified to emphasize that all ethernet-like
            interfaces must use the ethernetCsmacd ifType.

(10) Several clarifications were made to the section on

the mapping of the Interface MIB objects to ethernet.

(11) MIB boilerplate in section 2 has been updated to the

latest approved text.

A.2. Changes between RFC 2358 and RFC 2665

This section enumerates changes made to RFC 2358 to produce RFC 2665.

      (1)   Section 2 has been replaced with the current SNMP
            Management Framework boilerplate.
      
      (2)   The ifMtu mapping has been clarified.
      
      (3)   The relationship between the IEEE 802.3 octet counters
            and the IF-MIB octet counters has been clarified.
      
      (4)   REFERENCE clauses have been updated to reflect the
            actual IEEE 802.3 managed object that each MIB object
            is based on.
      
      (5)   The following object DESCRIPTION clauses have been
            updated to reflect that they do not increment in
            full-duplex mode: dot3StatsSingleCollisionFrames,
            dot3StatsMultipleCollisionFrames, dot3StatsSQETestErrors,
            dot3StatsDeferredTransmissions, dot3StatsLateCollisions,
            dot3StatsExcessiveCollisions, dot3StatsCarrierSenseErrors,
            dot3CollFrequencies.
      
      (6)   The following object DESCRIPTION clauses have been
            updated to reflect behaviour on full-duplex and
            1000 Mb/s interfaces: dot3StatsAlignmentErrors,
            dot3StatsFCSErrors, dot3StatsSQETestErrors,
            dot3StatsLateCollisions, dot3StatsSymbolErrors.
      
      (7)   Two new tables, dot3ControlTable and dot3PauseTable,
            have been added.
      
      (8)   A new object, dot3StatsDuplexStatus, has been added.
      
      (9)   The object groups and compliances have been restructured.

(10) The dot3StatsEtherChipSet object has been deprecated.

(11) The dot3ChipSets have been moved to a separate document.

A.3. Changes between RFC 1650 and RFC 2358

This section enumerates changes made to RFC 1650 to produce RFC 2358.

      (1)   The MODULE-IDENTITY has been updated to reflect the changes
            in the MIB.
      
      (2)   A new object, dot3StatsSymbolErrors, has been added.
      
      (3)   The definition of the object dot3StatsIndex has been
            converted to use the SMIv2 OBJECT-TYPE macro.
      
      (4)   A new conformance group, etherStats100MbsGroup, has been
            added.
      
      (5)   A new compliance statement, ether100MbsCompliance, has
            been added.
      
      (6)   The Acknowledgements were extended to provide a more
            complete history of the origin of this document.
      
      (7)   The discussion of ifType has been expanded.
      
      (8)   A section on mapping of Interfaces MIB objects has
            been added.
      
      (9)   A section defining the relationship of this MIB to
            the MAU MIB has been added.

(10) A section on the mapping of IEEE 802.3 managed objects

to this MIB and the Interfaces MIB has been added.

      (11)  Converted the dot3Tests, dot3Errors, and dot3ChipSets
            OIDs to use the OBJECT-IDENTITY macro.

(12) Added to the list of registered dot3ChipSets.

(13) An intellectual property notice and copyright notice

were added, as required by RFC 2026.

Author's Address

John Flick
Hewlett-Packard Company
8000 Foothills Blvd. M/S 5557
Roseville, CA 95747-5557

   Phone: +1 916 785 4018
   EMail: johnf@rose.hp.com

Full Copyright Statement

Copyright © The Internet Society (2003). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assignees.

This document and the information contained herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

Funding for the RFC Editor function is currently provided by the Internet Society.